$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$p \\ a$		0.001	0.01	0.05	0.1	1/6	0.2	0.25	1/3	0.4	0.5	$_{n-x}^{p}$
1 1.000 0.983 0.736 0.392 0.130 0.0699 0.024 0.003 0.001 0.000 18 2 1.000 0.999 0.925 0.877 0.329 0.206 0.091 0.018 0.004 0.001 17 4 1.000 1.000 0.994 0.867 0.567 0.411 0.225 0.060 0.016 0.001 17 4 1.000 1.000 1.000 0.997 0.957 0.769 0.630 0.415 0.152 0.051 0.006 16 5 1.000 1.000 1.000 0.989 0.898 0.804 0.617 0.297 0.126 0.021 15 6 1.000 1.000 1.000 0.098 0.898 0.804 0.617 0.297 0.126 0.021 15 6 1.000 1.000 1.000 1.000 0.989 0.988 0.808 0.479 0.250 0.058 14 7 1.000 1.000 1.000 1.000 0.999 0.997 0.986 0.898 0.661 0.416 0.132 13 8 1.000 1.000 1.000 1.000 0.999 0.997 0.986 0.988 0.661 0.416 0.132 13 10 1.000 1.000 1.000 1.000 0.999 0.997 0.986 0.988 0.599 0.559 0.525 12 9 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.996 0.962 0.872 0.588 10 11 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.996 0.962 0.872 0.588 10 11 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.997 0.986 13 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.997 0.986 0.983 0.979 0.868 13 14 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.994 0.942 7 14 1.000 1.	n = 20								,	86 (2012)			0.0
$\begin{array}{c} 2 & 1.000 & 0.999 & 0.925 & 0.677 & 0.329 & 0.206 & 0.091 & 0.018 & 0.004 & 0.000 & 18\\ 3 & 1.000 & 1.000 & 0.994 & 0.867 & 0.567 & 0.411 & 0.225 & 0.060 & 0.016 & 0.001 & 17\\ 4 & 1.000 & 1.000 & 1.000 & 0.997 & 0.769 & 0.630 & 0.415 & 0.152 & 0.051 & 0.006 & 16\\ 5 & 1.000 & 1.000 & 1.000 & 0.998 & 0.988 & 0.804 & 0.617 & 0.297 & 0.126 & 0.021 & 15\\ 6 & 1.000 & 1.000 & 1.000 & 1.000 & 0.998 & 0.983 & 0.813 & 0.786 & 0.479 & 0.250 & 0.058 & 14\\ 7 & 1.000 & 1.000 & 1.000 & 1.000 & 0.998 & 0.963 & 0.898 & 0.661 & 0.416 & 0.132 & 13\\ 8 & 1.000 & 1.000 & 1.000 & 1.000 & 0.997 & 0.990 & 0.995 & 0.809 & 0.595 & 0.252 & 12\\ 9 & 1.000 & 1.000 & 1.000 & 1.000 & 0.999 & 0.999 & 0.996 & 0.809 & 0.755 & 0.412 & 11\\ 10 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.999 & 0.999 & 0.996 & 0.962 & 0.872 & 0.588 & 10\\ 11 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.999 & 0.997 & 0.943 & 0.748 & 9\\ 12 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.999 & 0.997 & 0.943 & 0.748 & 9\\ 12 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.999 & 0.997 & 0.948 & 8\\ 13 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.999 & 0.997 & 0.948 & 9.799 & 0.868 & 8\\ 13 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.999 & 0.997 & 0.948 & 9.799 & 0.942 & 0.748 & 9\\ 14 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.999 & 0.997 & 0.942 & 9.742 & 0$		0	0.980	0.818									
3 1,000 1,000 0,984 0,867 0,567 0,411 0,225 0,060 0,016 0,001 17 4 1,000 1,000 1,000 0,997 0,957 0,769 0,630 0,415 0,152 0,051 0,006 16 5 1,000 1,000 1,000 0,989 0,898 0,804 0,617 0,297 0,126 0,021 15 6 1,000 1,000 1,000 1,000 0,989 0,988 0,804 0,617 0,297 0,126 0,021 15 7 1,000 1,000 1,000 1,000 0,989 0,988 0,898 0,661 0,416 0,132 13 8 1,000 1,000 1,000 1,000 0,999 0,986 0,989 0,661 0,416 0,132 13 10 1,000 1,000 1,000 1,000 0,999 0,997 0,986 0,989 0,596 0,252 12 9 1,000 1,000 1,000 1,000 1,000 0,999 0,996 0,962 0,872 0,588 10 11 1,000 1,000 1,000 1,000 1,000 1,000 1,000 0,999 0,986 0,988 0,975 0,412 11 11 1,000 1,000 1,000 1,000 1,000 1,000 1,000 0,999 0,987 0,943 0,748 9 12 1,000 1,000 1,000 1,000 1,000 1,000 1,000 0,999 0,987 0,943 0,748 9 13 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 0,999 0,998 0,979 0,868 8 14 1,000 1		1	1.000										
1		2											
5 1.000 1.000 1.000 0.989 0.898 0.804 0.617 0.297 0.126 0.021 15 6 1.000 1.000 1.000 0.998 0.968 0.968 0.913 0.786 0.479 0.250 0.058 14 7 1.000 1.000 1.000 1.000 0.989 0.968 0.898 0.661 0.416 0.132 13 13 1.000 1.000 1.000 1.000 0.999 0.996 0.959 0.890 0.556 0.252 12 10.000 1.000 1.000 1.000 0.000 0.999 0.997 0.986 0.980 0.755 0.412 11 10 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.996 0.962 0.872 0.588 10 11 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.996 0.962 0.872 0.588 10 11 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.996 0.962 0.987 0.943 0.748 9 12 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.996 0.993 0.994 0.942 7 14 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.994 0.942 7 14 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.997 0.994 0.942 7 14 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.994 0.994 17 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.994 0.994 17 1.000 1.		3	1.000	1.000	0.984		4						
S		4	1.000	1.000	0.997								38 2000
7 1.000 1.000 1.000 1.000 0.989 0.988 0.898 0.661 0.416 0.132 13 8 1.000 1.000 1.000 1.000 0.997 0.990 0.995 0.896 0.596 0.252 12 9 10.000 1.000 1.000 1.000 0.000 0.999 0.995 0.896 0.968 0.756 0.252 12 10 10 1.000 1.000 1.000 1.000 1.000 0.999 0.997 0.986 0.908 0.755 0.412 11 10 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.996 0.962 0.872 0.588 10 11 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.997 0.996 0.962 0.872 0.588 10 11 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.997 0.943 0.748 9 12 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.997 0.898 8 13 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.994 0.942 7 144 1.000 1.00		5	1.000	1.000	1.000								
S 1.000 1.000 1.000 1.000 0.997 0.990 0.959 0.808 0.596 0.252 12		6	1.000	1.000									
9 1.000 1.000 1.000 1.000 1.000 0.999 0.997 0.986 0.908 0.755 0.412 11 10 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.996 0.996 0.962 0.872 0.588 10 11 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.997 0.997 0.943 0.748 9 12 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.997 0.994 0.943 13 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.997 0.943 0.748 9 14 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.997 0.943 0.748 9 15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.994 0.942 7 14 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.994 0.992 6 15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.994 0.994 17 1.000 1.0		7	1.000	1.000	1.000								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		8	1.000	1.000	1.000								
11 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.987 0.943 0.748 9 12 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.996 0.979 0.868 8 13 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.994 0.942 7 14 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.994 0.942 7 15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.979 6 15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 9 17 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 4 17 1.000 1.00		9	1.000	1.000	1.000	1.000	0.999						
12 1.000	1	0.	1.000	1.000	1.000	1.000							
$\begin{array}{c} 13 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.999 & 0.994 & 0.942 & 7 \\ 14 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.998 & 0.979 & 6 \\ 15 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.998 & 0.979 & 6 \\ 16 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.998 & 9.994 & 9 \\ 17 & 1.000 & 0.000 & 24 & 2 1.000 & 0.998 & 0.873 & 0.537 & 0.189 & 0.098 & 0.032 & 0.004 & 0.000 & 0.000 & 23 & 3 1.000 & 1.000 & 0.993 & 0.992 & 0.594 & 0.421 & 0.214 & 0.046 & 0.009 & 0.000 & 22 & 4 1.000 & 1.000 & 0.993 & 0.992 & 0.594 & 0.421 & 0.214 & 0.046 & 0.009 & 0.000 & 21 & 5 1.000 & 1.000 & 1.000 & 0.991 & 0.981 & 0.780 & 0.561 & 0.222 & 0.074 & 0.007 & 19 & 7 1.000 & 1.000 & 1.000 & 0.998 & 0.985 & 0.885 & 0.222 & 0.074 & 0.054 & 17 & 9 1.000 & 1.000 & 1.000 & 1.000 & 0.998 & 0.983 & 0.989 & 0.908 & 0.732 & 0.345 & 14 & 12 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.998 & 0.985 & 0.885 & 10 & 121 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.998 & 0.985 & 0$	1	1	1.000	1.000	1.000	1.000	1.000						
$\begin{array}{c} 14 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.998 & 0.979 & 6 \\ 15 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.994 & 5 \\ 16 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.999 & 4 \\ 17 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\ 18 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\ 19 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\ 20 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\ 20 & 1.000 & 0.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\ 21 & 1.000 & 0.974 & 0.642 & 0.271 & 0.063 & 0.027 & 0.007 & 0.001 & 0.000 & 0.000 & 24 \\ 22 & 1.000 & 0.998 & 0.873 & 0.537 & 0.189 & 0.098 & 0.032 & 0.004 & 0.000 & 0.000 & 24 \\ 22 & 1.000 & 0.998 & 0.873 & 0.537 & 0.189 & 0.098 & 0.032 & 0.004 & 0.000 & 0.000 & 24 \\ 4 & 1.000 & 1.000 & 0.966 & 0.764 & 0.382 & 0.234 & 0.096 & 0.015 & 0.002 & 0.000 & 22 \\ 4 & 1.000 & 1.000 & 0.993 & 0.992 & 0.594 & 0.421 & 0.214 & 0.046 & 0.009 & 0.002 & 20 \\ 6 & 1.000 & 1.000 & 1.000 & 0.991 & 0.891 & 0.780 & 0.561 & 0.222 & 0.074 & 0.007 & 19 \\ 7 & 1.000 & 1.000 & 1.000 & 0.998 & 0.955 & 0.891 & 0.727 & 0.370 & 0.154 & 0.022 & 18 \\ 8 & 1.000 & 1.000 & 1.000 & 1.000 & 0.998 & 0.955 & 0.891 & 0.727 & 0.370 & 0.154 & 0.022 & 18 \\ 8 & 1.000 & 1.000 & 1.000 & 1.000 & 0.999 & 0.994 & 0.970 & 0.822 & 0.586 & 0.212 & 15 \\ 11 & 1.000 & 1.000 & 1.000 & 1.000 & 0.999 & 0.994 & 0.970 & 0.822 & 0.586 & 0.212 & 15 \\ 11 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.999 & 0.998 & 0.998 & 0.998 & 0.998 & 0.998 \\ 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.099 & 0.999 & 0.994 & 0.990 & 0.994 & 0.990 & 0.994 & 0.990 & 0.994 & 0.990 & 0.994 & 0.990 & 0.994 & 0.990 & 0.994 & 0.990 & 0.994 & 0.990 & 0.994 & 0.990 & 0.994 & 0.990 & 0.998 & 0.998 & 0.998 & 0.998 & 0.998 & 0.998 & 0.998 & 0.998 & 0.998 & 0.998 & 0.998 & 0.998 & 0.998 & 0.998 & 0.998 & $	1	2	1.000	1.000	1.000	1.000							8
$\begin{array}{c} 15 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.994 & 5 \\ 16 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.999 & 4 \\ 17 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.000 \\ 18 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.000 \\ 19 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.000 \\ 20 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.000 \\ 21 & 1.000 & 0.975 & 0.778 & 0.277 & 0.072 & 0.010 & 0.004 & 0.001 & 0.000 & 0.000 & 0.000 & 0.000 & 25 \\ 11 & 1.000 & 0.9974 & 0.642 & 0.271 & 0.063 & 0.027 & 0.007 & 0.001 & 0.000 & 0.000 & 24 \\ 21 & 1.000 & 0.998 & 0.873 & 0.537 & 0.189 & 0.098 & 0.032 & 0.004 & 0.000 & 0.000 & 23 \\ 31 & 1.000 & 1.000 & 0.998 & 0.764 & 0.382 & 0.234 & 0.096 & 0.015 & 0.002 & 0.000 & 22 \\ 41 & 1.000 & 1.000 & 0.993 & 0.967 & 0.772 & 0.617 & 0.378 & 0.112 & 0.029 & 0.002 & 22 \\ 41 & 1.000 & 1.000 & 0.999 & 0.967 & 0.772 & 0.617 & 0.378 & 0.112 & 0.029 & 0.002 & 20 \\ 61 & 1.000 & 1.000 & 1.000 & 0.991 & 0.891 & 0.780 & 0.561 & 0.222 & 0.074 & 0.007 & 19 \\ 71 & 1.000 & 1.000 & 1.000 & 0.998 & 0.955 & 0.891 & 0.727 & 0.370 & 0.154 & 0.022 & 18 \\ 81 & 1.000 & 1.000 & 1.000 & 1.000 & 0.998 & 0.983 & 0.929 & 0.696 & 0.425 & 0.115 & 16 \\ 10 & 1.000 & 1.000 & 1.000 & 1.000 & 0.999 & 0.994 & 0.970 & 0.822 & 0.586 & 0.212 & 15 \\ 111 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.999 & 0.998 & 0.988 & 0.732 & 0.335 & 14 \\ 122 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.999 & 0.998 & 0.985 & 0.885 & 0.212 & 15 \\ 114 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.999 & 0.998 & 0.998 & 0.998 & 0.998 & 0.998 \\ 183 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.999 & 0.998 & 0.$	1	.3	1.000	1.000	1.000	1.000	1.000						7
$\begin{array}{c} 16 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 4 \\ 17 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 1.000 0.000 0.000 \\ 18 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 \\ 19 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 \\ 20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 \\ 20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 \\ 1.000 0.000 1.000 1.000 1.000 \\ 1.000 0.000 0.000 0.000 0.000 \\ 21 1.000 0.974 0.642 0.271 0.663 0.027 0.007 0.001 0.000 0.000 0.002 \\ 21 1.000 0.998 0.873 0.537 0.189 0.098 0.032 0.004 0.000 0.000 0.23 \\ 31 1.000 1.000 0.966 0.764 0.382 0.234 0.096 0.015 0.002 0.000 22 \\ 41 1.000 1.000 0.993 0.992 0.594 0.421 0.214 0.046 0.009 0.000 21 \\ 51 1.000 1.000 0.999 0.967 0.772 0.617 0.378 0.112 0.029 0.002 20 \\ 61 1.000 1.000 1.000 0.991 0.891 0.780 0.561 0.222 0.074 0.007 19 \\ 71 1.000 1.000 1.000 0.998 0.955 0.891 0.727 0.370 0.154 0.022 18 \\ 81 1.000 1.000 1.000 1.000 0.998 0.955 0.893 0.929 0.696 0.425 0.115 16 \\ 10 1.000 1.000 1.000 1.000 0.999 0.994 0.970 0.822 0.586 0.212 15 \\ 11 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.998 0.989 0.998 0.732 0.345 14 \\ 12 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.984 0.922 0.655 12 \\ 14 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.998 0.998 0.998 0.998 \\ 17 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.998 0.998 \\ 18 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.998 \\ 20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 \\ 21 1.000 1.000 1$	1	4	1.000	1.000	1.000	1.000	1.000	1.000	1.000				
$\begin{array}{c} 17 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 3 \\ 18 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 2 \\ 19 1.000 0.000 $	1	.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000			
$\begin{array}{c} 18 1.000 0.000 0.$	1	.6	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000			
$\begin{array}{c} 19 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1\\ 20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0\\ \hline n=25 \\ \hline 0 0.975 0.778 0.277 0.072 0.010 0.004 0.001 0.000 0.000 0.000 0.000 25\\ \hline 1 1.000 0.994 0.642 0.271 0.063 0.027 0.007 0.001 0.000 0.000 0.000 24\\ \hline 2 1.000 0.998 0.873 0.537 0.189 0.098 0.032 0.004 0.000 0.000 23\\ \hline 3 1.000 1.000 0.966 0.764 0.382 0.234 0.096 0.015 0.002 0.000 22\\ \hline 4 1.000 1.000 0.993 0.902 0.594 0.421 0.214 0.046 0.009 0.000 21\\ \hline 5 1.000 1.000 0.999 0.967 0.772 0.617 0.378 0.112 0.029 0.002 20\\ \hline 6 1.000 1.000 1.000 0.991 0.891 0.780 0.561 0.222 0.074 0.007 19\\ \hline 7 1.000 1.000 1.000 0.998 0.955 0.891 0.727 0.370 0.154 0.022 18\\ \hline 8 1.000 1.000 1.000 1.000 0.998 0.955 0.891 0.727 0.370 0.154 0.022 18\\ \hline 8 1.000 1.000 1.000 1.000 0.998 0.983 0.929 0.696 0.425 0.115 16\\ \hline 10 1.000 1.000 1.000 1.000 0.999 0.994 0.970 0.822 0.586 0.212 15\\ \hline 11 1.000 1.000 1.000 1.000 1.000 0.999 0.998 0.989 0.988 0.732 0.345 14\\ \hline 12 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.994 0.970 0.998 0.987 0.885 10\\ \hline 13 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.994 0.990 0.994 0.992 0.666 0.788 11\\ \hline 15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.998 0.987 0.885 10\\ \hline 16 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.998 0.99$	1	7	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000			
$\begin{array}{c} n=25 \\ \hline n=25 \\ \hline 0 & 0.975 & 0.778 & 0.277 & 0.072 & 0.010 & 0.004 & 0.001 & 0.000 & 0.000 & 0.000 & 25 \\ \hline 1 & 1.000 & 0.974 & 0.642 & 0.271 & 0.063 & 0.027 & 0.007 & 0.001 & 0.000 & 0.000 & 0.000 & 24 \\ \hline 2 & 1.000 & 0.998 & 0.873 & 0.537 & 0.189 & 0.098 & 0.032 & 0.004 & 0.000 & 0.000 & 23 \\ \hline 3 & 1.000 & 1.000 & 0.966 & 0.764 & 0.382 & 0.234 & 0.096 & 0.015 & 0.002 & 0.000 & 22 \\ \hline 4 & 1.000 & 1.000 & 0.993 & 0.902 & 0.594 & 0.421 & 0.214 & 0.046 & 0.009 & 0.000 & 22 \\ \hline 4 & 1.000 & 1.000 & 0.999 & 0.967 & 0.772 & 0.617 & 0.378 & 0.112 & 0.029 & 0.002 & 20 \\ \hline 6 & 1.000 & 1.000 & 1.000 & 0.991 & 0.891 & 0.780 & 0.561 & 0.222 & 0.074 & 0.007 & 19 \\ \hline 7 & 1.000 & 1.000 & 1.000 & 0.998 & 0.955 & 0.891 & 0.727 & 0.370 & 0.154 & 0.022 & 18 \\ \hline 8 & 1.000 & 1.000 & 1.000 & 1.000 & 0.984 & 0.953 & 0.851 & 0.538 & 0.274 & 0.054 & 17 \\ \hline 9 & 1.000 & 1.000 & 1.000 & 1.000 & 0.995 & 0.983 & 0.929 & 0.696 & 0.425 & 0.115 & 16 \\ \hline 10 & 1.000 & 1.000 & 1.000 & 1.000 & 0.999 & 0.994 & 0.970 & 0.822 & 0.586 & 0.212 & 15 \\ \hline 11 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.998 & 0.989 & 0.989 & 0.732 & 0.345 & 14 \\ \hline 12 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.999 & 0.984 & 0.922 & 0.655 & 12 \\ \hline 14 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.999 & 0.994 & 0.992 & 0.994 & 0.922 & 0.655 & 12 \\ \hline 14 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.999 & 0.994 & 0.992 & 0.994 & 0.992 & 0.998 \\ \hline 17 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.999 & 0.994 & 0.996 & 0.788 & 11 \\ \hline 15 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.999 & 0.994 & 0.999 & 0.994 & 0.996 & 0.788 & 11 \\ \hline 15 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.999 & 0.998 & 0.998 \\ \hline 17 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.999 & 0.998 & 0.999 & 0.998 & 0.998 \\ \hline 18 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.999 & 0.998 & 0.999 & 0.998 & 0.999 & 0.998 & 0.999 & 0.998 & 0.999 & 0.999 & 0.999 & 0.999 & 0.999 & 0.999 & 0.999 & 0.999 & 0.999$	1	.8	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
$n=25 \\ \hline n=25 \\ \hline 1 & 1.000 & 0.975 & 0.778 & 0.277 & 0.072 & 0.010 & 0.004 & 0.001 & 0.000 & 0.000 & 0.000 & 25 \\ \hline 1 & 1.000 & 0.974 & 0.642 & 0.271 & 0.063 & 0.027 & 0.007 & 0.001 & 0.000 & 0.000 & 24 \\ \hline 2 & 1.000 & 0.998 & 0.873 & 0.537 & 0.189 & 0.098 & 0.032 & 0.004 & 0.000 & 0.000 & 23 \\ \hline 3 & 1.000 & 1.000 & 0.966 & 0.764 & 0.382 & 0.234 & 0.096 & 0.015 & 0.002 & 0.000 & 22 \\ \hline 4 & 1.000 & 1.000 & 0.993 & 0.992 & 0.594 & 0.421 & 0.214 & 0.046 & 0.009 & 0.000 & 21 \\ \hline 5 & 1.000 & 1.000 & 0.999 & 0.967 & 0.772 & 0.617 & 0.378 & 0.112 & 0.029 & 0.002 & 20 \\ \hline 6 & 1.000 & 1.000 & 1.000 & 0.991 & 0.891 & 0.780 & 0.561 & 0.222 & 0.074 & 0.007 & 19 \\ \hline 7 & 1.000 & 1.000 & 1.000 & 0.998 & 0.955 & 0.891 & 0.727 & 0.370 & 0.154 & 0.022 & 18 \\ \hline 8 & 1.000 & 1.000 & 1.000 & 1.000 & 0.984 & 0.953 & 0.851 & 0.538 & 0.274 & 0.054 & 17 \\ \hline 9 & 1.000 & 1.000 & 1.000 & 1.000 & 0.995 & 0.983 & 0.929 & 0.696 & 0.425 & 0.115 & 16 \\ \hline 10 & 1.000 & 1.000 & 1.000 & 1.000 & 0.999 & 0.994 & 0.970 & 0.822 & 0.586 & 0.212 & 15 \\ \hline 11 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.998 & 0.980 & 0.982 & 0.353 & 0.846 & 0.500 & 13 \\ \hline 13 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.999 & 0.984 & 0.970 & 0.822 & 0.586 & 0.212 & 15 \\ \hline 14 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.999 & 0.984 & 0.922 & 0.586 & 0.212 & 15 \\ \hline 14 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.999 & 0.984 & 0.922 & 0.655 & 12 \\ \hline 14 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.999 & 0.984 & 0.922 & 0.655 & 12 \\ \hline 14 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.999 & 0.984 & 0.987 & 0.885 & 10 \\ \hline 16 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.999 & 0.984 & 0.987 & 0.885 & 10 \\ \hline 16 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.999 & 0.978 & 8 \\ \hline 18 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.999 & 0.984 & 0.922 & 0.655 & 12 \\ \hline 21 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.000 & 0.998 & 6 \\ \hline 20 & 1.000 & 1.000 & 1.000 & 1.000$	1	9	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	20	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	n - 25												
$\begin{array}{c} 1 1.000 0.974 0.642 0.271 0.063 0.027 0.007 0.001 0.000 0.000 24 \\ 2 1.000 0.998 0.873 0.537 0.189 0.098 0.032 0.004 0.000 0.000 23 \\ 3 1.000 1.000 0.966 0.764 0.382 0.234 0.096 0.015 0.002 0.000 22 \\ 4 1.000 1.000 0.993 0.992 0.594 0.421 0.214 0.046 0.009 0.000 21 \\ 5 1.000 1.000 0.999 0.967 0.772 0.617 0.378 0.112 0.029 0.002 20 \\ 6 1.000 1.000 1.000 0.999 0.967 0.772 0.617 0.378 0.112 0.029 0.002 20 \\ 7 1.000 1.000 1.000 0.998 0.955 0.891 0.780 0.561 0.222 0.074 0.007 19 \\ 7 1.000 1.000 1.000 0.998 0.955 0.891 0.727 0.370 0.154 0.022 18 \\ 8 1.000 1.000 1.000 1.000 0.998 0.955 0.891 0.727 0.370 0.154 0.022 18 \\ 8 1.000 1.000 1.000 1.000 0.998 0.953 0.851 0.538 0.274 0.054 17 \\ 9 1.000 1.000 1.000 1.000 0.995 0.983 0.929 0.696 0.425 0.115 16 \\ 10 1.000 1.000 1.000 1.000 0.999 0.994 0.970 0.822 0.586 0.212 15 \\ 111 1.000 1.000 1.000 1.000 1.000 0.998 0.989 0.998 0.732 0.345 14 \\ 12 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.958 0.846 0.500 13 \\ 13 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.984 0.922 0.655 12 \\ 14 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.987 0.885 10 \\ 16 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.978 8 \\ 18 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.998 0.997 0.998 \\ 20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.978 8 \\ 18 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.978 8 \\ 18 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.978 8 \\ 21 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.0$	n = 20	0	0.975	0.778	0.277	0.072	0.010	0.004	0.001	0.000	0.000	0.000	25
$\begin{array}{c} 2 1.000 0.998 0.873 0.537 0.189 0.098 0.032 0.004 0.000 0.000 23 \\ 3 1.000 1.000 0.966 0.764 0.382 0.234 0.096 0.015 0.002 0.000 22 \\ 4 1.000 1.000 0.993 0.902 0.594 0.421 0.214 0.046 0.009 0.000 21 \\ 5 1.000 1.000 0.999 0.967 0.772 0.617 0.378 0.112 0.029 0.002 20 \\ 6 1.000 1.000 1.000 0.999 0.987 0.772 0.617 0.378 0.112 0.029 0.002 20 \\ 6 1.000 1.000 1.000 0.999 0.981 0.780 0.561 0.222 0.074 0.007 19 \\ 7 1.000 1.000 1.000 0.998 0.955 0.891 0.727 0.370 0.154 0.022 18 \\ 8 1.000 1.000 1.000 1.000 0.998 0.955 0.891 0.727 0.370 0.154 0.022 18 \\ 8 1.000 1.000 1.000 1.000 0.998 0.953 0.851 0.538 0.274 0.054 17 \\ 9 1.000 1.000 1.000 1.000 0.995 0.983 0.929 0.696 0.425 0.115 16 \\ 10 1.000 1.000 1.000 1.000 0.999 0.994 0.970 0.822 0.586 0.212 15 \\ 11 1.000 1.000 1.000 1.000 1.000 0.998 0.989 0.998 0.732 0.345 14 \\ 12 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.958 0.846 0.500 13 \\ 13 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.984 0.922 0.655 12 \\ 14 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.988 0.987 0.885 10 \\ 16 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.987 0.885 10 \\ 16 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.978 8 \\ 18 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.998 0.997 \\ 19 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 \\ 20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 \\ 20 1.00$												0.000	
3 1,000 1,000 0,966 0.764 0.382 0.234 0.096 0.015 0.002 0.000 22 4 1,000 1,000 0.993 0.902 0.594 0.421 0.214 0.046 0.009 0.000 21 5 1,000 1,000 0.999 0.967 0.772 0.617 0.378 0.112 0.029 0.002 20 6 1,000 1,000 1,000 0.991 0.891 0.780 0.561 0.222 0.074 0.007 19 7 1,000 1,000 1,000 0.998 0.955 0.891 0.727 0.370 0.154 0.022 18 8 1,000 1,000 1,000 0.998 0.955 0.881 0.727 0.370 0.154 0.022 18 8 1,000 1,000 1,000 0.995 0.983 0.929 0.696 0.425 0.115 16 10 1,000 1,000 1,000 0.998 0.989 0.988 0.732 0.345 14				ASSESSMENT NO.									
4 1.000 1.000 0.993 0.902 0.594 0.421 0.214 0.046 0.009 0.000 21 5 1.000 1.000 0.999 0.967 0.772 0.617 0.378 0.112 0.029 0.002 20 6 1.000 1.000 1.000 0.991 0.891 0.780 0.561 0.222 0.074 0.007 19 7 1.000 1.000 1.000 0.998 0.955 0.891 0.727 0.370 0.154 0.022 18 8 1.000 1.000 1.000 0.998 0.955 0.891 0.727 0.370 0.154 0.022 18 8 1.000 1.000 1.000 0.998 0.953 0.851 0.538 0.274 0.054 17 9 1.000 1.000 1.000 0.995 0.983 0.929 0.696 0.425 0.115 16 10 1.000 1.000 1.000 1.000 1.000 0.999 0.994 0.970 0.822 0.													
5 1.000 1.000 0.999 0.967 0.772 0.617 0.378 0.112 0.029 0.002 20 6 1.000 1.000 1.000 0.991 0.891 0.780 0.561 0.222 0.074 0.007 19 7 1.000 1.000 1.000 0.998 0.955 0.891 0.727 0.370 0.154 0.022 18 8 1.000 1.000 1.000 1.000 0.984 0.953 0.851 0.538 0.274 0.054 17 9 1.000 1.000 1.000 1.000 0.995 0.983 0.929 0.696 0.425 0.115 16 10 1.000 1.000 1.000 1.000 0.999 0.994 0.970 0.822 0.586 0.212 15 11 1.000 1.000 1.000 1.000 1.000 0.998 0.988 0.988 0.988 0.732 0.345 14 12 1.000 1.000 1.000 1.000 1.000 0.999													
6 1.000 1.000 1.000 0.991 0.891 0.780 0.561 0.222 0.074 0.007 19 7 1.000 1.000 1.000 0.998 0.955 0.891 0.727 0.370 0.154 0.022 18 8 1.000 1.000 1.000 1.000 0.984 0.953 0.851 0.538 0.274 0.054 17 9 1.000 1.000 1.000 1.000 1.000 0.995 0.983 0.929 0.696 0.425 0.115 16 10 1.000 1.000 1.000 1.000 1.000 0.999 0.994 0.970 0.822 0.586 0.212 15 11 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.989 0.908 0.732 0.345 14 12 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.998 0.998 0.973 0.846 0.500 13 13 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.994 0.922 0.655 12 14 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.994 0.992 0.994 0.966 0.788 11 15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.994 0.966 0.788 11 15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.994 0.966 0.788 11 16 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.996 0.996 0.946 9 17 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.978 8 18 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.978 8 18 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.978 8 18 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.978 8 20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 6 20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 6 20 1.000 1.													
7 1.000 1.000 1.000 0.998 0.955 0.891 0.727 0.370 0.154 0.022 18 8 1.000 1.000 1.000 1.000 0.984 0.953 0.851 0.538 0.274 0.054 17 9 1.000 1.000 1.000 1.000 0.995 0.983 0.929 0.696 0.425 0.115 16 10 1.000 1.000 1.000 1.000 0.999 0.994 0.970 0.822 0.586 0.212 15 11 1.000 1.000 1.000 1.000 1.000 0.999 0.994 0.970 0.822 0.586 0.212 15 11 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.989 0.908 0.732 0.345 14 12 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.958 0.846 0.500 13 13 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.984 0.922 0.655 12 14 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.984 0.922 0.655 12 14 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.984 0.966 0.788 11 15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.987 0.885 10 16 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.996 0.946 9 17 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.978 8 18 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.978 8 18 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.978 8 18 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 6 20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 6 20 1.000													
8 1.000 1.000 1.000 1.000 0.984 0.953 0.851 0.538 0.274 0.054 17 9 1.000 1.000 1.000 1.000 0.995 0.983 0.929 0.696 0.425 0.115 16 10 1.000 1.000 1.000 1.000 0.999 0.994 0.970 0.822 0.586 0.212 15 11 1.000 1.000 1.000 1.000 1.000 0.998 0.989 0.989 0.988 0.345 14 12 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.958 0.846 0.500 13 13 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.958 0.846 0.500 13 13 1.000 1.000 1.000 1.000 1.000 0.999 0.984 0.922 0.655 12 14 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 <		7											
9 1.000 1.000 1.000 1.000 0.995 0.983 0.929 0.696 0.425 0.115 16 10 1.000 1.000 1.000 1.000 0.999 0.994 0.970 0.822 0.586 0.212 15 11 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.989 0.989 0.908 0.732 0.345 14 12 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.958 0.846 0.500 13 13 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.984 0.922 0.655 12 14 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.984 0.922 0.655 12 15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.984 0.922 0.655 12 16 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.987 0.885 10 16 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.987 0.885 10 16 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.987 0.885 10 17 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.978 8 18 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.978 8 18 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.988 6 20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 6 20 1.000 1.		R R											
10 1.000 1.000 1.000 1.000 0.999 0.994 0.970 0.822 0.586 0.212 15 11 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.989 0.908 0.732 0.345 14 12 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.958 0.846 0.500 13 13 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.984 0.922 0.655 12 14 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.984 0.922 0.655 12 15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.984 0.987 0.885 10 16 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.987 0.885 10 16 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.987 0.885 10 17 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.978 8 18 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.978 8 18 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.993 7 19 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 6 20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 5 21 1.000 1.													
11 1.000 1.000 1.000 1.000 1.000 0.998 0.989 0.908 0.732 0.345 14 12 1.000 1.000 1.000 1.000 1.000 0.997 0.958 0.846 0.500 13 13 1.000 1.000 1.000 1.000 1.000 0.999 0.984 0.922 0.655 12 14 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.984 0.922 0.655 12 14 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.984 0.922 0.655 12 14 1.000 1.000 1.000 1.000 1.000 1.000 0.994 0.966 0.788 11 15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.987 0.885 10 16 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.978	1												
12 1.000 1.000 1.000 1.000 1.000 0.997 0.958 0.846 0.500 13 13 1.000 1.000 1.000 1.000 1.000 0.999 0.984 0.922 0.655 12 14 1.000 1.000 1.000 1.000 1.000 1.000 0.994 0.966 0.788 11 15 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.987 0.885 10 16 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.987 0.885 10 17 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.946 9 17 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.978 8 18 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 6 20<										^			
13 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.984 0.922 0.655 12 14 1.000 1.000 1.000 1.000 1.000 1.000 0.994 0.966 0.788 11 15 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.987 0.885 10 16 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.987 0.885 10 16 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.987 0.885 10 17 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.978 8 18 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 6 20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 <													
14 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.994 0.966 0.788 11 15 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.987 0.885 10 16 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.996 0.946 9 17 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.978 8 18 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.978 8 19 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.993 7 19 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 6 20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000													
15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.987 0.885 10 16 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.996 0.946 9 17 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.978 8 18 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.993 7 19 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 6 20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 5 21 1.000 1.0													
16 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.996 0.946 9 17 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.978 8 18 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.993 7 19 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 6 20 1.000													
17 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.978 8 18 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.978 8 19 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 6 20 1.000 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>20</td> <td></td> <td></td> <td></td>										20			
18 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.993 7 19 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 6 20 1.000 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>													
19 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 6 20 1.000													2.4
20 1.000 1.													
21 1.000 1.													
$22 ext{ } 1.000 ext{ } 1.0$													
23 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 2 24 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1 25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0							A SHARE						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											CONTRACTOR INTEREST		
25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0 0 0													
q=0.999=0.99=0.95=0.9=5/6=0.8=0.75=2/3=0.6=0.5=q	•	20								2			
		$oldsymbol{q}$	0.999	0.99	0.95	0.9	5/6	บ.ช	0.75	2/3	0.0	0.0	$oldsymbol{q}$

19 Mechanik

19.1 Kinematik

Geradlinige Bewegung

Gleichförmige Bewegung $s = s_0 + vt$ (konstante

Geschwindigkeit)

 $s = s_0 + v_0 t + \frac{1}{2} a t^2$ $v = v_0 + a t$ $v^2 = v_0^2 + 2a (s - s_0)$ Gleichmässig beschleu-

nigte Bewegung (konstante

Beschleunigung)

Mittlere Geschwindigkeit $\bar{v} = \frac{\Delta s}{\Delta t} = \frac{s_2 - s_1}{t_2 - t_1}$ (2)

Mittlere Beschleunigung

Darstellung in Diagrammen gleichförmig gleichmässig beschleunigt

↑Weg s_2 +-----Zeit

Zusammenhänge

Die Geschwindigkeit zu einem Zeitpunkt (Momentangeschwindigkeit) entspricht der Steigung des Graphen im Weg-Zeit-Diagramm zu diesem Zeitpunkt. (vgl. 55: Differential quotient; vgl. 61: Bewegungsprobleme)

s Weg (Koordinate)

 s_0 Wert von s zum Zeitpunkt t = 0

v Geschwindigkeit

Zeit

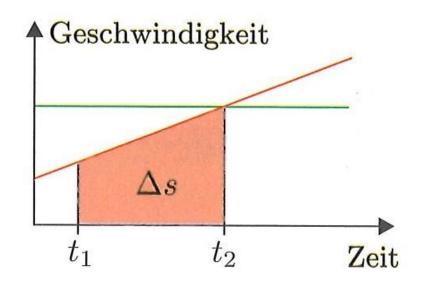
(vgl. 14: Lineare Funktion)

v Momentangeschwindigkeit

 v_0 Anfangsgeschwindigkeit, Wert von v zum Zeitpunkt t = 0

a Beschleunigung

(vgl. 15: Quadratische Funktion)


 s_1 Weg (Koordinate) zum Zeitpunkt t_1

 s_2 Weg (Koordinate) zum Zeitpunkt t_2

 Δs Wegstrecke

 Δt Zeitspanne

(vgl. 14: Lineare Funktion)

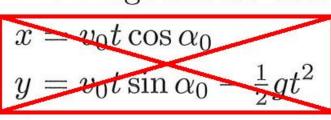
Die in der Zeitspanne Δt zurückgelegte Wegstrecke Δs entspricht dem Flächeninhalt der markierten Fläche im Geschwindigkeit-Zeit-Diagramm. (vgl. 58: Bestimmtes Integral; vgl. 61: Bewegungsprobleme)

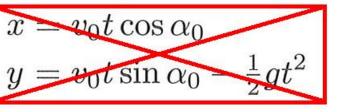
81

"Zeitlose Formel"

Für gleichförmig beschleunigte Bewegungen mit Anfangsgeschwindigkeit vo und Endgeschwindigkeit v_E gilt

$$\overline{V} = \frac{V_{\circ} + V_{E}}{2}$$


und es gilt stets $s = \overline{v} \cdot Dt$. Die mittlere Geschwindigkeit wird in der Hälfte der Zeit erreicht, d.h. $\overline{v} = v_o + \frac{1}{2} a \cdot \Delta t$. Für v_E gilt $v_E = v_o + a \cdot \Delta t$.


Schiefer Wurf

Flugbahn

Die Flugbahn ist eine Parabel.

Gleichförmige Kreisbewegung

Winkelkoordinate (im Bogenmass)

 $\varphi = -$

(vgl. 23: Bogenmass des

Winkels)

Winkelgeschwindigkeit

$$\omega = \frac{\Delta \varphi}{\Delta t}$$

Bahngeschwindigkeit

$$v = \omega r$$

Periode, Umlaufzeit

$$T = \frac{2\pi r}{v} = \frac{2\pi}{\omega}$$

Frequenz, Drehzahl

$$f = \frac{1}{T} = \frac{\omega}{2\pi}$$

Zentripetalbeschleunigung $a_z = \frac{\ddot{}}{r} = r\omega^2$ (zum Zentrum der Kreisbewegung gerichtet) (vgl. 84: Zentripetalkraft)

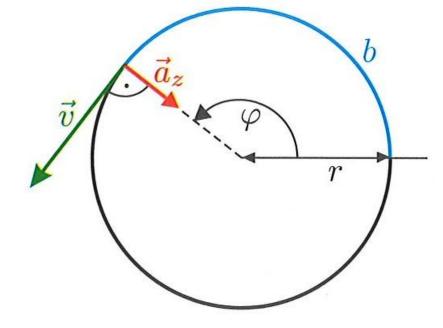
waagerechte Wegkoordinate

senkrechte Wegkoordinate

Zeit

Betrag der

Anfangsgeschwindigkeit

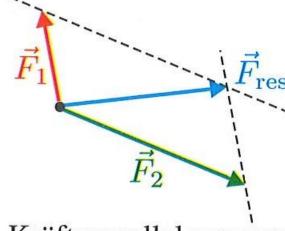

Abwurfwinkel

Fallbeschleunigung, Erde: $g \approx 9.81 \text{m/s}^2$

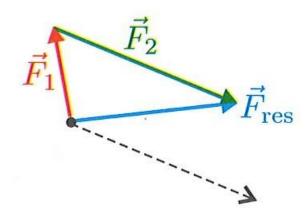
Bogenlänge

Kreisradius

 $\Delta \varphi$ Drehwinkel (im Bogenmass), der in der Zeitspanne Δt überstrichen wird


19.2 Dynamik

Resultierende Kraft


$$ec{F}_{\mathrm{res}} = ec{F}_1 + ec{F}_2 + \ldots + ec{F}_n \ = \sum_{n} ec{F}_i$$

 $\vec{F}_1, \vec{F}_2, \dots$ Kräfte, die am gleichen Körper angreifen (vgl. 33, 8.1)

Beispiel für zwei Kräfte

Kräfteparallelogramm konstruieren

Kraftvektoren aneinander hängen

82

Der schiefe Wurf ist nicht mehr im Stoffplan. Das Thema kann im Kontext von Energieerhaltung jedoch immer noch auftauchen.

oder

Newtonsche Axiome

Tr	ägheitsprinz	ip
(I.	Axiom)	

Ein Körper, auf den keine Kraft wirkt, behält Betrag und Richtung seiner Geschwindigkeit bei.

 $\vec{v} = konst., \quad \text{wenn} \quad \vec{F}_{\text{res}} = \vec{0}$

Geschwindigkeit \vec{F}_{res} resultierende Kraft

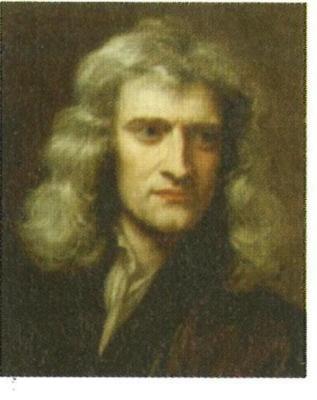
Aktionsprinzip (II. Axiom)

Die Anderung des Bewegungszustandes ist proportional zur wirkenden Kraft und erfolgt in der Richtung, in der die Kraft wirkt.

 $\vec{F}_{\mathrm{res}} = m\vec{a}$

 $\vec{F}_{\rm res}$ resultierende Kraft

Masse


Beschleunigung

Wechselwirkungsprinzip,

"Actio = Reactio" (III. Axiom)

Wirkt ein Körper 1 auf einen Körper 2 mit der Kraft \vec{F}_{21} ein, so wirkt stets der Körper 2 auf den Körper 1 mit einer gleich grossen, entgegengesetzt gerichteten Kraft F_{12} ein.

 $\vec{F}_{12} = -\vec{F}_{21}$

Isaac Newton (1643 - 1727)

Spezielle Kräfte

Gewichtskraft

 $F_G = mg$

(Gewicht)

Federkraft $F_F = Dy$ (Hookesches Gesetz)

g Fallbeschleunigung, Ortsfaktor Erde: $g \approx 9.81 \,\mathrm{m/s^2} =$ $9.81\,\mathrm{N/kg}$

Federkonstante

Längenänderung, Längenunterschied zwischen gespannter und ungespannter Feder

Normalkraft Die Kraft, mit der zwei Körper senkrecht

zur Berührungsfläche aufeinander einwir-

ken, heisst Normalkraft F_N .

 $F_R = \mu_G \cdot F_N$ (2) Gleitreibungskraft

Gleitreibungszahl (vgl. 101, 24.1)

Haftreibungszahl

83

(vgl. 101, 24.1)

Haftreibungskraft $F_R \leq \mu_H \cdot F_N$

Auftriebskraft Gravitationskraft

(vgl. 88: Auftriebskraft) (vgl. 86: Gravitationsgesetz)

Coulombkraft (vgl. 95: Coulombsches Kraftgesetz) Lorentzkraft

(vgl. 98: Lorentzkraft)

Die Gleitreibungskraft oder kurz "Reibungskraft" kommt gelegentlich im Kontext von Energieerhaltung vor. Es handelt sich dann ganz einfach um eine Kraft, die eine Bewegung abbremst und das Reibungsgesetz muss häufig nicht angewendet werden.

Gleichförmige Kreisbewegung

Zentripetalkraft
$$F_Z = ma_z = mr\omega^2 = \frac{mv^2}{r}$$

Bahnradius

Winkelgeschwindigkeit

Bahngeschwindigkeit

Zentripetalbeschleunigung

(vgl. 82: Zentripetalbeschleunigung)

Impuls

Impuls

$$\vec{p} = m\vec{v}$$

Masse

 $ec{F}\Delta t = \Delta ec{p}$ (1 Kraftstoss

Geschwindigkeit

konstante Kraft Zeitspanne

 $\Delta \vec{p}$ Impulsänderung

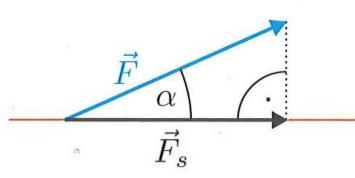
Impulserhaltungssatz

Der Gesamtimpuls \vec{p}_{tot} in einem abgeschlossenen System hat einen konstanten Betrag und eine konstante Richtung. Er wird von Vorgängen im System nicht beeinflusst.

 $\vec{p}_1, \vec{p}_2, \dots$ Einzelimpulse

Arbeit

Arbeit

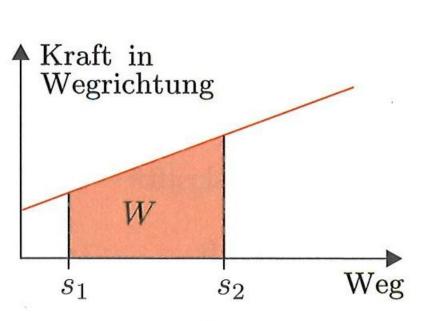

$$W = F_s \cdot s$$
 (3)

 $F_s = F \cos \alpha$

 $W = \vec{F} \cdot \vec{s}$

(konstante Kraft)

Kraft in Wegrichtung


(vgl. 46: Skalarprodukt)

Arbeit

(Skalarprodukt)

Arbeit (Kraft-Weg-Diagramm)

Wird die Kraft in Wegrichtung F_s in einem Diagramm als Funktion des Weges aufgetragen, so entspricht die zwischen den Wegkoordinaten s_1 und s_2 verrichtete Arbeit W der markierten Fläche.

(vgl. 58: Bestimmtes Integral)

84

- Der "Kraftstoss" ist nicht im Stoffplan. Es handelt sich jedoch um eine nützliche Grösse: Die Impulsänderung ist gleich dem Produkt aus Kraft und der Dauer ihrer Einwirkung.
- Bei der Impulserhaltung ist zu beachten, dass der Impuls eine Vektorgrösse ist. Die Richtung kann meist mithilfe von Vorzeichen berücksichtigt werden, z.B. Impulse nach rechts sind positiv und Impulse nach links sind negativ.
- Die einfache Definition von Arbeit als Arbeit = Kraft · Weg gilt nur dann, wenn Kraft und Weg kollinear sind. Für die Arbeit "wirksam" ist nur die Kraftkomponente in Wegrichtung. Insbesondere wird keine Arbeit verrichtet, wenn Kraft und Weg lotrecht stehen.

Mechanische Energie

Energie

Die Energie ist eine Zustandsgrösse eines Systems, die zunimmt, wenn von aussen Arbeit am System verrichtet wird, und die abnimmt, wenn das System nach aussen Arbeit verrichtet.

$$\Delta E = W$$

 ΔE Energieänderung

W Arbeit

Kinetische Energie/ $E_{\rm kin} = \frac{1}{2}mv^2$ Bewegungsenergie

Masse Geschwindigkeit

Potentielle Energie/ $E_{\rm pot} = mgh$

Fallbeschleunigung, Ortsfaktor

Erde: $g \approx 9.81 \,\mathrm{m/s^2}$ Höhe über Bezugsniveau

Energie einer gespannten Feder

Lageenergie

 $E_F = \frac{1}{2}Dy^2$

Federkonstante

Längenänderung (vgl. 83: Federkraft)

Energieerhaltungssatz

Die Gesamtenergie E_{tot} in einem abgeschlossenen System hat einen konstanten Wert, der von Vorgängen im System nicht beeinflusst wird.

$$= \sum_{i=1}^{n} E_i = konst.$$

 $E_{\text{tot}} = E_1 + E_2 + \ldots + E_n$ E_1, E_2, \ldots Einzelenergien

Leistung

Mittlere Leistung

 ΔW Arbeit, die in der Zeitspanne Δt verrichtet wird

Wirkungsgrad

 $\Delta E_{\rm nutz}$ abgegebene Nutzenergie $\Delta E_{\rm auf}$ aufgenommene Energie

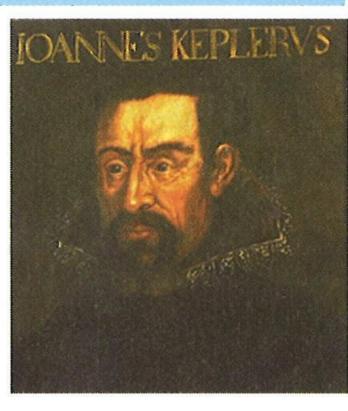
19.3 Gravitation

Gravitationsgesetz $F_G = G \frac{m_1 m_2}{r^2}$ (nach Newton)

$$F_G = G \, \frac{m_1 m_2}{r^2}$$

 F_G Gravitationskraft m_1, m_2 punktförmige oder kugelsymmetrische Massen

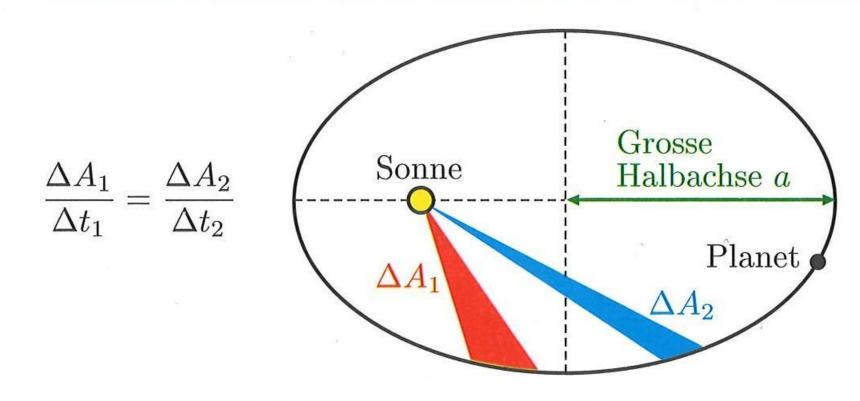
> Abstand der Massenmittelpunkte


G Gravitationskonstante $(G \approx 6.67 \cdot 10^{-11} \, \text{Nm}^2/\text{kg}^2)$

Keplersche Gesetze

I. Bahnkurve

Planeten bewegen sich auf Ellipsen. Die Sonne steht in einem Brennpunkt der Ellipse.


(vgl. 43: Ellipse)

Johannes Kepler (1571 - 1630)

II. Flächensatz

Die Verbindungslinie zwischen Sonne und Planet überstreicht in gleichen Zeitintervallen Δt gleiche Flächeninhalte ΔA .

III. Verhältnis der Umlaufzeiten

Die Quadrate der Umlaufzeiten zweier Planeten verhalten sich wie die Kuben ihrer grossen Halbachsen (bzw. Radien bei Kreisbahnen)

$$\frac{T_1^2}{T_2^2} = \frac{a_1^3}{a_2^3}$$
 oder $\frac{a^3}{T^2} = kons$

Umlaufzeit


grosse Halbachse (vgl. 109, 30.3)

(vgl. 16: Potenzgesetze)

86

Bei kreisförmigen Bahnen wird anstelle der grossen Halbachse a der Bahnradius r verwendet.

19.4 Statik

Einseitiger Hebel

Zweiseitiger Hebel

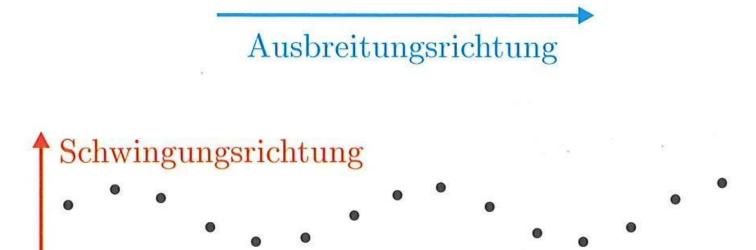
Hydrostatik

Dichte (vgl. 101, 24.2)	$arrho=rac{m}{V}$	V	Masse Volumen
Druck	$p = \frac{F}{A}$	F	Kraft (⊥ zur Fläche)
	A	A	Fläche
		ϱ	Dichte der Flüssigkeit
Schweredruck/	$p=\varrho gh$	g	Fallbeschleunigung,
Hydrostatischer			Ortsfaktor
Druck			Erde: $g \approx 9.81 \mathrm{m/s^2}$
	25	h	Tiefe, Abstand von der
			Oberfläche, Höhe der Flüs-
			sigkeitssäule
Auftriebskraft/	$F_A=arrho g V_E$	V	E eingetauchtes Volumen,
Auftrieb			Volumen der verdrängten
			Flüssigkeit

19.5 Schwingungen und Wellen Harmonische Schwingungen (vgl. 29, 6.5) Periode. Frequenz Schwingungsdauer $\omega = \frac{2\pi}{T} = 2\pi f$ Kreisfrequenz $y = \hat{y} \cdot \sin(\omega t - \varphi_0)$ Amplitude Elongation/ Zeit Momentane Aus- φ_0 Nullphase lenkung Phase $\vec{F} = -k\vec{y}$ Kraftgesetz Richtgrösse (z. B. für Feder k = D) $T = 2\pi \sqrt{\frac{m}{k}}$ Schwingungsdauer m Masse Fadenlänge Mathematisches $T \approx 2\pi_{\Lambda}$ Fallbeschleunigung, Pendel (masseloser Faden, Ortsfaktor Punktmasse, Erde: $g \approx 9.81 \,\mathrm{m/s^2}$ Näherung für kleine Amplituden)

88

- Merke, wenn ein Körper im Wasser schwimmt oder schwebt, verdrängt er so viele Kilogramm Wasser wie er selbst wiegt.
- Diese Formel nicht streichen!


Wellen

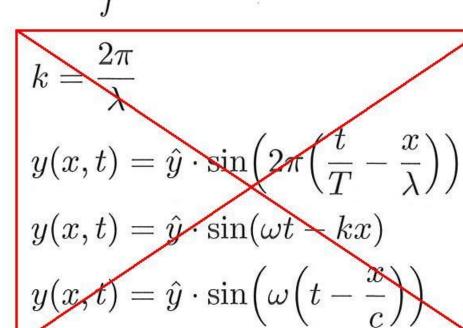
Longitudinalwelle

(Bei einer Longitudinalwelle erfolgt die Elongation der Schwinger und die Ausbreitungsrichtung der Wellen auf einer Linie)

Transversalwelle

(Bei einer Transversalwelle stehen die Elongation der Schwinger und die Ausbreitungsrichtung der Welle senkrecht zueinander)

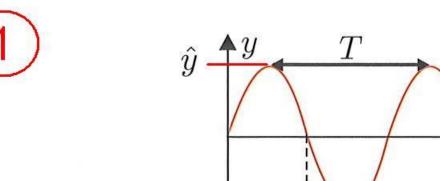
Ausbreitungsrichtung

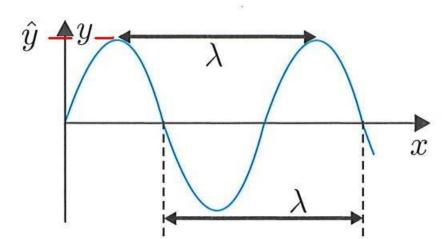

Schwingungsrichtung

Wellenlänge

$$\lambda = \frac{c}{f}$$

Wellenzahl


Sinuswelle



- Ausbreitungsgeschwindigkeit
- Frequenz
- Elongation
- Amplitude
- Ortskoordinate
- Zeit
- Periode, Schwingungsdauer
- ω Kreisfrequenz

Graphische Darstellung Elongation eines Oszillators als Funktion der Zeit t.

Momentaufnahme einer Welle, Elongation als Funktion der Ortskoordinate x.

Dopplereffekt (klassisch)

 $c \pm v_B$ $f_B = f_S \cdot$

Oberes Vorzeichen für Annäherung

 f_B beobachtete Frequenz f_S Senderfrequenz

 v_B Geschwindigkeit des Beobachters v_S Geschwindigkeit des

Senders

Zwei Darstellungen von Wellen, einmal als "Schnappschuss" und das andere Mal als Weg-Zeit-Diagramm eines einzelnen schwingenden Punkts im Ausbreitungsmedium.

Wärmelehre

Temperatur

Die Temperatur ist ein Mass für den Wärmezustand eines Systems. Sie wird durch die mittlere Bewegungsenergie der Teilchen bestimmt.

Celsius-Temperatur

 $\vartheta (\text{in } ^{\circ}\text{C}) = T - T_n (\text{in K})$

 $T (\text{in K}) = \vartheta + 273.15 (\text{in } ^{\circ}\text{C})$

Absolute Temperatur

 $T_n = 273.15 \text{ K}$

Temperaturdifferenz

 $\Delta \vartheta = \Delta T$ (gleiche Skalenteilung)

Längenänderung (Festkörper)

 $\Delta l \approx \alpha l \Delta T$ Längenausdehnungskoeffizient (vgl. 102, 25.1) $\Delta V \approx 3\alpha V \Delta T$

Volumenänderung (Festkörper)

 ΔT kleine Temperaturänderung

 T_n Normtemperatur

Volumenänderung (Flüssigkeiten)

Volumenausdehnungskoeffizient (vgl. 102, 25.1)

Ideales Gas

In einem idealen Gas fliegen die Teilchen ohne gegenseitige Wechselwirkungen und ohne Eigenvolumen umher Die Stösse gegen Hindernisse erfolgen vollkommen elastisch.

Zustandsgleichung

$$pV = NkT = nRT$$

 $M = N_A m_T$

 $\Delta V \approx \gamma V \Delta T$

Boltzmann-Konstante

 $k = \frac{R}{N_A}$ (vgl. Umschlag, 33)

Stoffmenge in Mol

Molare Masse (vgl. 110, 31.1) Druck

Volumen Teilchenzahl in V

universelle Gaskonstante

(vgl. Umschlag, 33) Casmasse

 m_T Masse eines Teilchens

 N_A Avogadro-Konstante (vgl. Umschlag, 33)

Gesetze speziell für konstante Gasmengen

von Boyle-Mariotte

pV = konst. bei konstanter Temperatur (isotherm)

von Gay-Lussac

= konst. bei konstantem Druck (isobar)

von Amontons

= konst. bei konstantem Volumen (isochor)

Teilchenbewegung

 $\overline{E_k} = \frac{3}{9}kT = \frac{1}{9}m_T\overline{v^2}$

 $\overline{E_k}$ Mittlere Bewegungsenergie eines Teilchens

= $\frac{1}{3} \frac{V}{V} \overline{E}_k$ Gasdruck

Boltzmann-Konstante (vgl. Umschlag, 33)

Mittelwert des Geschwindigkeitsquadrates

90

Alle Formeln, die wir verwenden, enthalten Temperaturdifferenzen ΔT , für welche eine Umrechnung nicht erforderlich ist. Weil die beiden Temperaturskalen nur gegeneinander verschoben sind, ergeben sich für Temperaturdifferenzen in beiden Temperaturskalen gleiche Zahlenwerte.

Luftfeuchtigkeit	Die Luftfeuchtigkeit gibt den gasförmigen Wassergehalt der Luft an.
Absolute Luft-feuchtigkeit	$\varphi_a = \varrho_W$ ϱ_W Wasserdampfdichte ϱ_s Sättigungsdampfdichte (vgl. 103, 25.5)
Relative Feuchtig- keit	$arphi_r = rac{arrho_W}{arrho_s}$
Taupunkt	Die Lufttemperatur ϑ in °C, bei der die vorhandene Wasserdampfdichte der Sättigungsdampfdichte entspricht, heisst Taupunkt τ . (vgl. 103, 25.5)

Wärme

Wärme bezeichnet die Energiemenge, die mit einer Temperaturänderung, einer Phasenänderung oder einer chemischen Reaktion verbunden ist. Sie beschreibt eine Form des Energieaustausches eines Systems mit seiner Umgebung.

Temperaturänderung

Erstarren

Schmelzen bzw.

Verdampfen bzw.

Kondensieren

Verbrennung

 $Q = cm\Delta T = Cn\Delta T$

 $Q = L_f m$

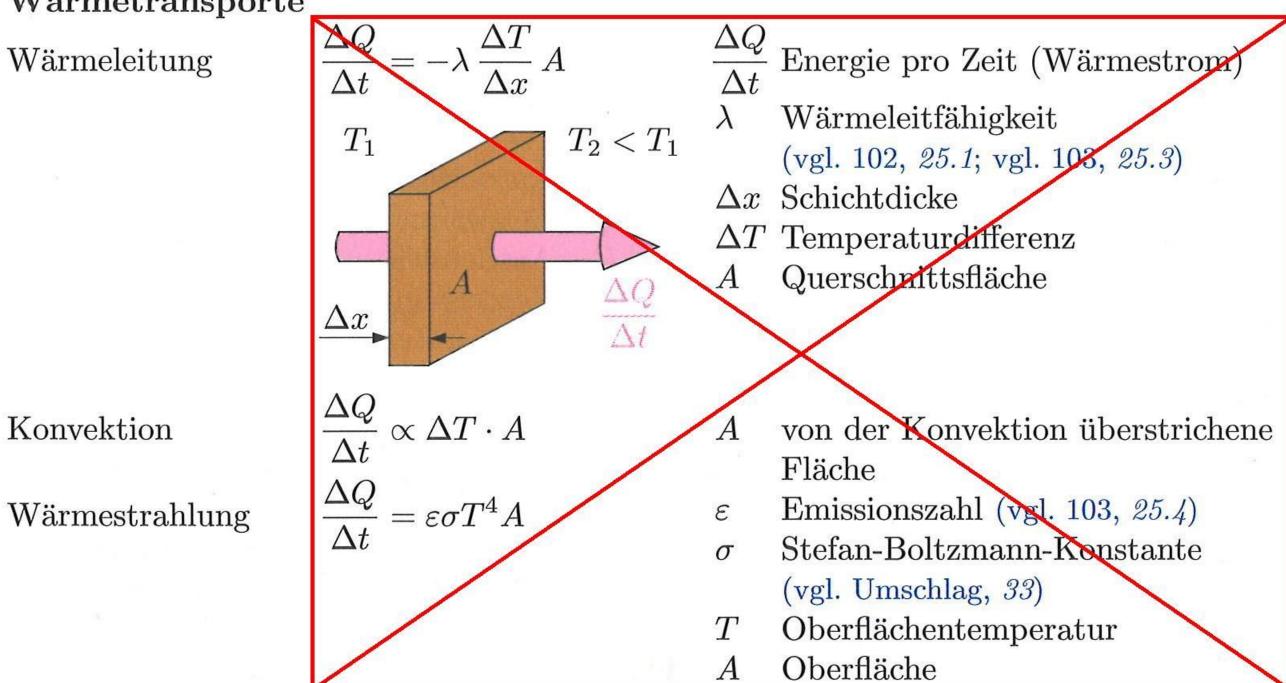
Q = Hm

Wärme, Wärmemenge

spezif. Wärmekapazität (vgl. 102, 25.1) molare Wärmekapazität (vgl. 102, 25.1)

Heizwert, Brennwert (vgl. 102, 25.2)

Masse


Stoffmenge in Mol $Q = L_v m$

spezif. Schmelzwärme (vgl. 102, 25.1)

spezif. Verdampfungswärme (vgl. 102, 25.1)

2

Wärmetransporte

Merke: Für den Wärmaustausch zwischen zwei Körpern gilt der Energiesatz: So viel Wärme wie der warme Körper abgibt, so viel Wärme nimmt der kalte Körper auf.

1. Hauptsatz

(in gleichwertigen Formulierungen)

a. In einem abgeschlossenen System bleibt die Gesamtenergie konstant.

- b. Energie kann nicht erzeugt, sondern nur umgewandelt und übertragen werden.
- c. Es gibt kein Perpetuum mobile 1. Art.

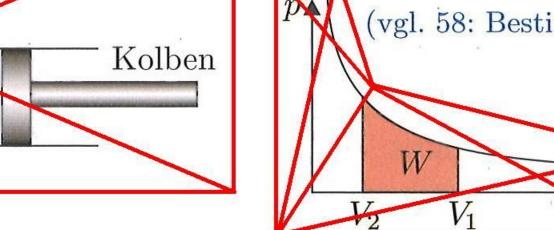
1. Hauptsatz

Kompressions-

arbeit

$$\Delta U = Q + W$$

 $W = -p\Delta V$

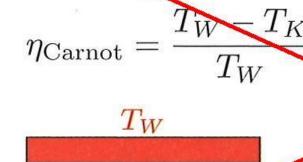

Zylinder

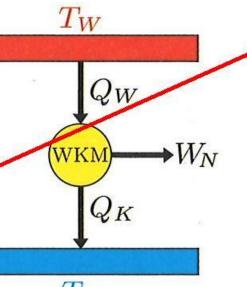
 ΔU Änderung der inneren Energie eines Systems

Energieaustausch mit der Umgebung in Form von Wärme

Energieaustausch mit der Umgebung in Form von Arbeit (vgl. 84: Arbeit)

(vgl. 58: Bestimmtes Integral)




Thermodynamische Wirkungsgrade (vgl. 85: Wirkungsgrad) Wärmekraftmaschinen (WKM)

Reale Maschine (Praxis)

Ideale Maschine (Theorie)

 $\eta_{\mathrm{Carnot}} =$

Wärmepumpen (WP)

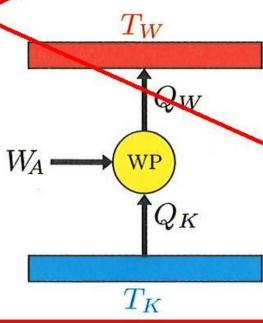
Reale Maschine (Praxis)

Ideale Maschine (Theorie)

 P_W

 $T_W - T_K$

 W_N Nutzarbeit


 Q_W Antriebswärme

 P_N Nutzleistung

 P_W Antriebsleistung

T_W Temperatur der Antriebswärme (in K)

Temperatur der Abwärme (in K)

 $\varepsilon_{\mathrm{real}} =$

 W_A Antriebsarbeit

 Q_W Heizwärme Antriebsleistung

 P_W Heizleistung

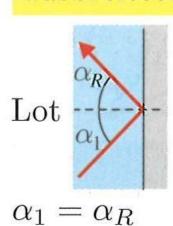
T_W Temperatur der Heizwärme (in K)

 T_K Temperatur der Wärmequelle (in K)

2. Hauptsatz

(in gleichwertigen Formulierungen)

- a. Wärme strömt von selbst immer zu Orten mit tieferen Temperaturen.
- o. Keine zyklisch arbeitende Einrichtung kann Wärme vollständig in mechanische Nutzenergie umwandeln; d. h., es gibt kein Perpetuum mobile 2. Art.
- c. Abgeschlossene Systeme streben einen Zustand maximaler Unordnung bzw. grösster Wahrscheinlichkeit an (Prinzip der max. Entropie).


21 Geometrische Optik

Lichtstrahl

Ein Lichtstrahl ist ein sehr feines Lichtbündel, das sich in einem homogenen Medium geradlinig und mit konstanter Geschwindigkeit ausbreitet. Der Lichtweg ist umkehrbar.

Reflexion

Brechung

 α_1 Einfallswinkel

 α_R Reflexionswinkel/ Ausfallswinkel

Reflexionsgesetz

(beim Übergang vom optisch dünneren

Medium 1 ins optisch dichtere Medium 2)

Lot ----

 $\sin \alpha_2$

Medium Medium

Einfallswinkel

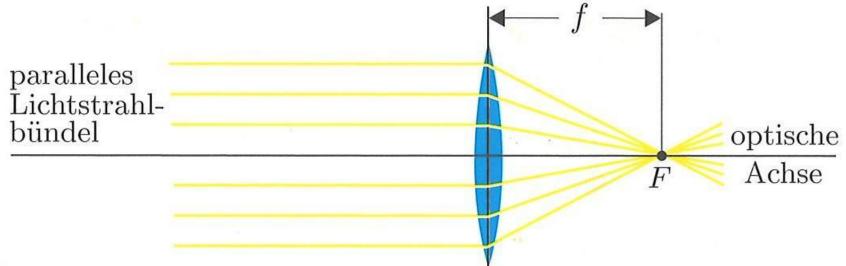
 α_2 Brechungswinkel

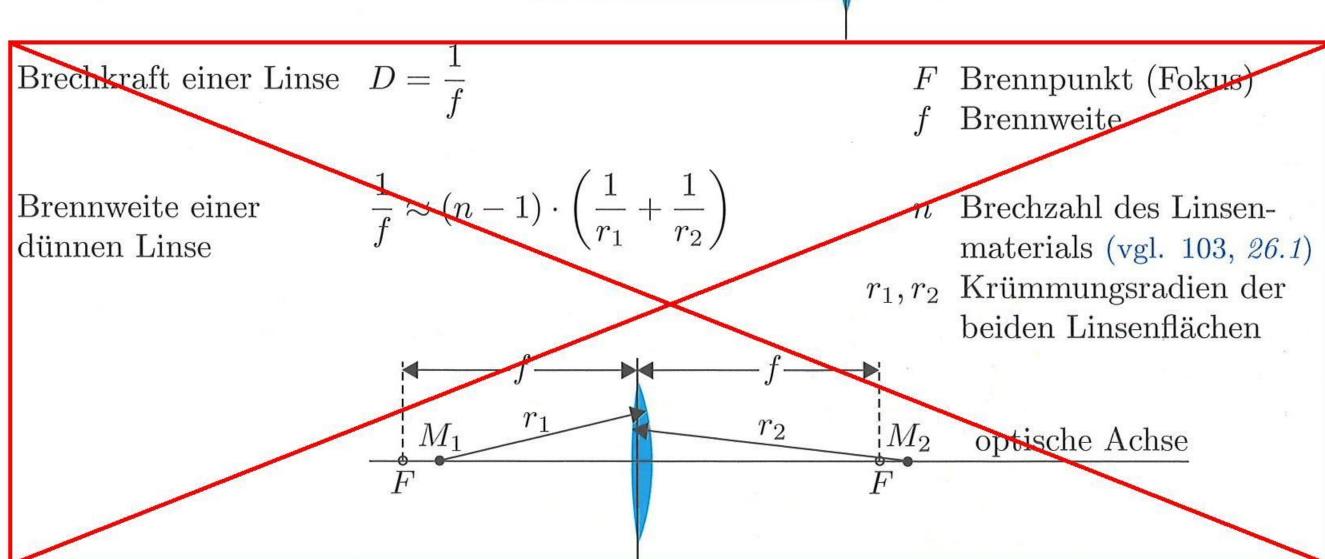
 n_{12} Brechzahl der Medienkombination

 n_1, n_2 Brechzahlen der Medien

(vgl. 103, 26.1; 26.2)

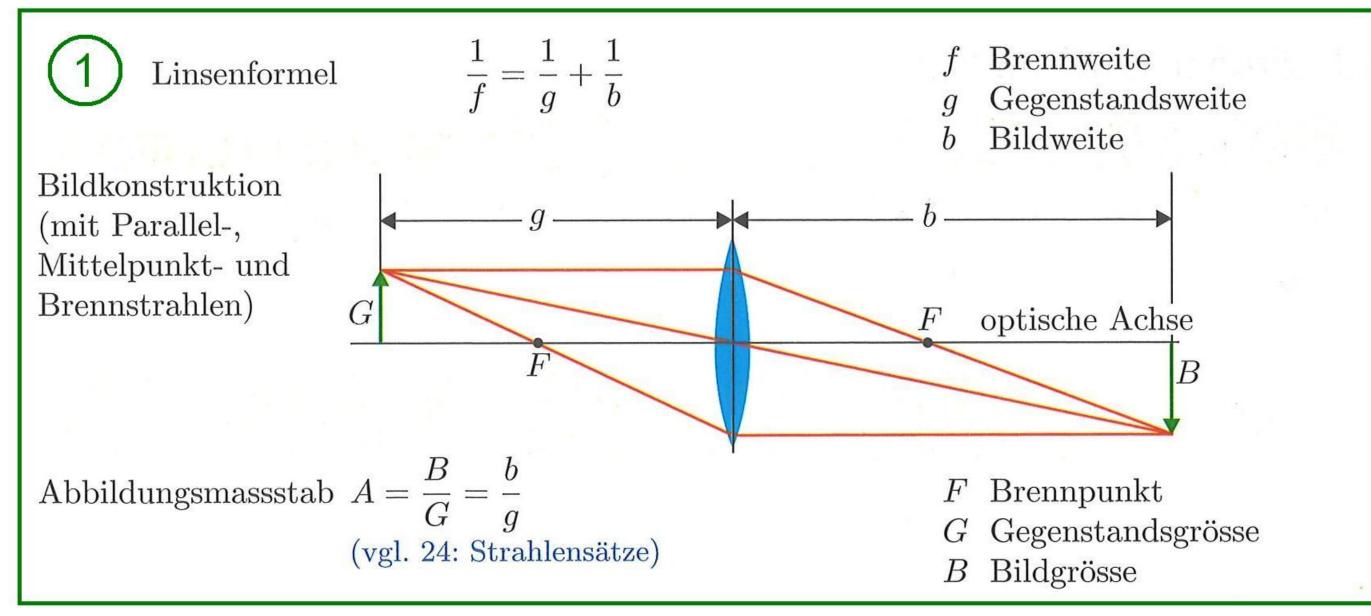
 c_1, c_2 Lichtgeschwindigkeiten in den Medien

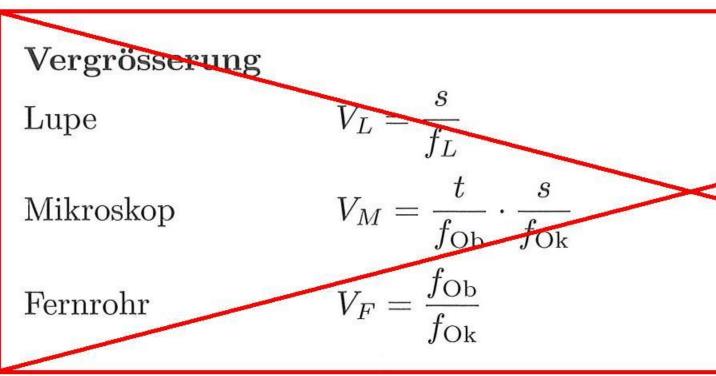

Lichtgeschwindigkeit in einem Medium

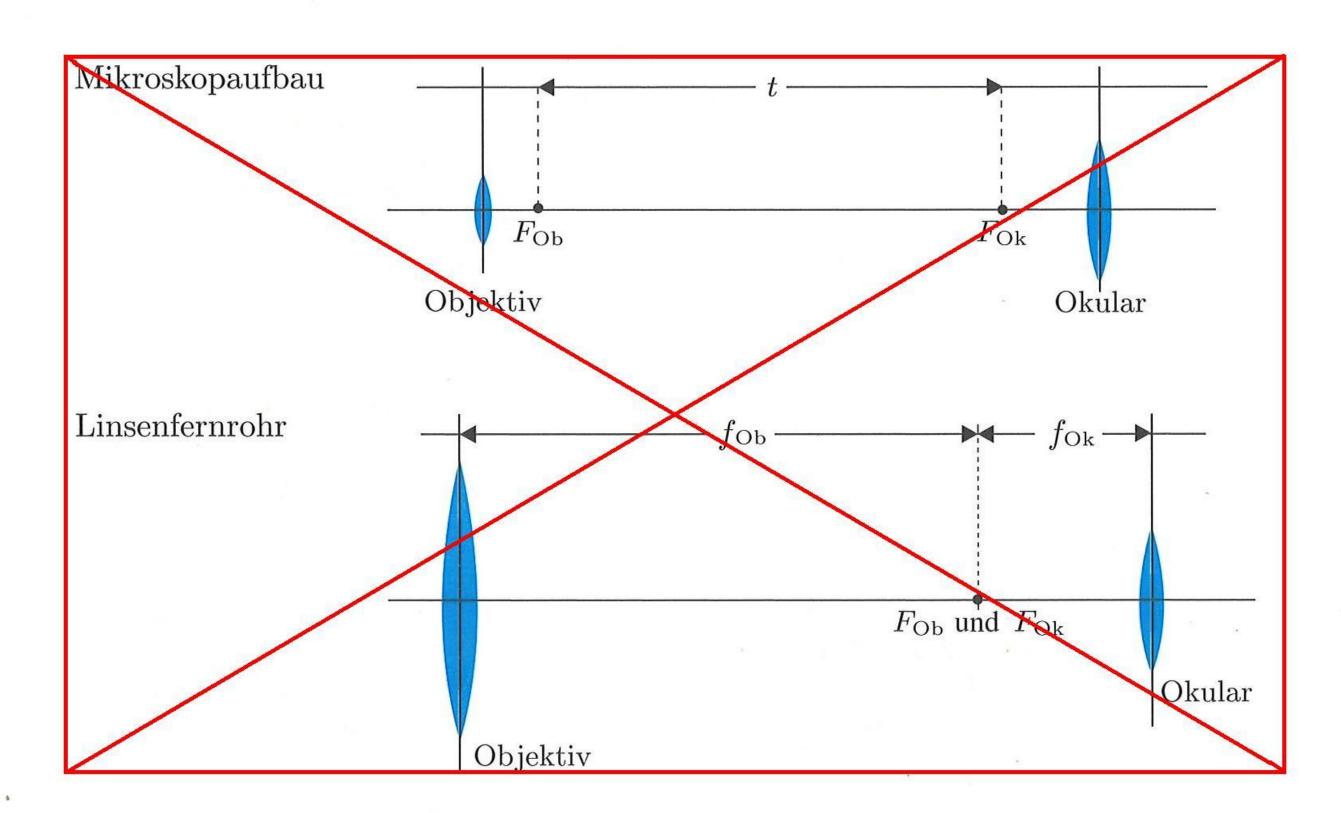

Brechungsgesetz

Lichtgeschwindigkeit im Vakuum (vgl. Umschlag, 33)

Linsen


Brennpunkt und Brennweite




Bei Übergangen von einem optisch dichteren in ein dünneres Medium "funktioniert" diese Formel für grosse Einfallswinkel nicht. Dann liegt Totalreflexion vor.

Merke auch, dass die vom Lot und vom Lichtstrahl eingeschlossenen Winkel verwendet werden.

deutliche Sehweite Normwert: $s = 250 \,\mathrm{mm}$ Brennweite von Lupe, Objektiv bzw. Okular Tubuslänge: Abstand der einander zugekehrten Brennpunkte von Objektiv und Okular

94

Linsen und Abbildungen mit Linsen sind im Stoffplan für die Ergänzungsprüfung, nicht jedoch für die gymnasiale Maturität.

22 Elektrizitätslehre

22.1 Elektrostatik

Ladungserhaltungs- $Q_{\text{tot}} = Q_1 + Q_2 + \ldots + Q_n$ satz

$$Q_{\text{tot}} = \sum_{i=1}^{n} Q_i = konst.$$

 Q_1, Q_2, \dots Einzelladungen

 $Q_{\rm tot}$ Gesamtladung im abgeschlossenen System

Kräfte zwischen Ladungen

Gleichnamige Ladungen stossen einander ab. Ungleichnamige Ladungen ziehen einander an.

Coulombsches Kraftgesetz (für Punktladungen)

für
$$F_C = rac{1}{4\pi arepsilon} rac{|Q_1 Q_2|}{r^2}$$

$$r_C - \frac{1}{4\pi\varepsilon} \frac{1}{r^2}$$

$$Q_1, Q_2$$
 Punktladungen

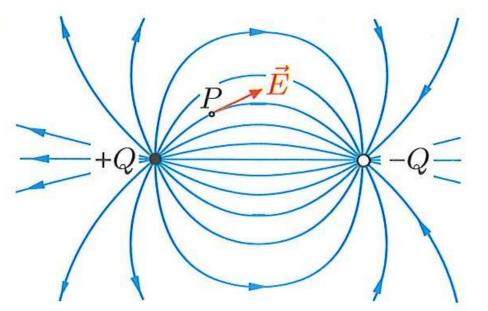
 r Abstand zwischen den

 F_C Coulombkraft

$$\varepsilon = \varepsilon_0 \varepsilon_r$$

Punktladungen
$$\varepsilon_0$$
 Elektrische Feldkonstan-

te
$$\varepsilon_0 \approx 8.85 \cdot 10^{-12} \text{ CV}^{-1} \text{m}^{-1}$$


$$\varepsilon_r$$
 Dielektrizitätszahl (vgl. 104, 27.2)

$$ec{E}=rac{ec{F}}{q}$$

Probeladung

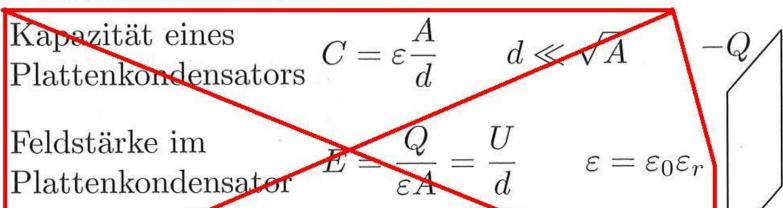
$$\vec{F}$$
 Kraft, die auf die Probeladung wirkt

Ein elektrisches Feld kann durch Feldstärkevektoren \vec{E} oder durch Feldlinien dargestellt werden.

$$U_{AB}=rac{W_{AB}}{q}$$

$$W_{AB}$$
 Arbeit des elektrischen Feldes zum Verschieben der Probeladung q von Punkt A nach Punkt B .

$$U_{AB} = \vec{E} \cdot \vec{s} = Es \cos \alpha$$
 (vgl. 46: Skalarprodukt)


$$ec{E}$$
 elektrische Feldstärke

$$s$$
 Strecke AB

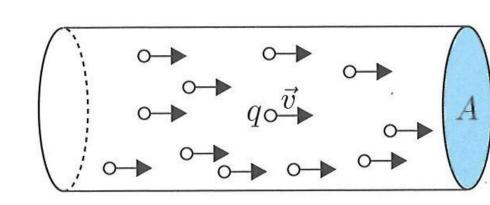
$$\alpha$$
 Winkel zwischen Feld-
richtung und Strecke AB

Kapazität
$$C = \frac{Q}{U}$$

Feldstärke im Plattenkondensator
$$E = \frac{Q}{\varepsilon A} = \frac{U}{d}$$
 $\varepsilon = \varepsilon_0 \varepsilon_r$ Plattenkondensator $E_{\text{Kond}} = \frac{1}{2} QU = \frac{1}{2} CU^2$ Pen Kondensators $E_{\text{Kond}} = \frac{1}{2} QU = \frac{1}{2} CU^2$

$$+Q$$
 A Fläche einer Platte d Plattenabstand Elektrische

d	Plattenabstand
ε_0	Elektrische
	Feldkonstante
$arepsilon_0$?	$\approx 8.85 \cdot 10^{-12} \text{ CV}^{-1} \text{m}^{-1}$
355	
$arepsilon_r$	Dielektrizitätszahl
	(vgl. 104, 27.2)


22.2 Elektrischer Stromkreis

Stromstärke

$$I = \frac{\Delta Q}{\Delta t}$$

Stromstärke in einem Leiter

$$I = nqvA$$

 $\frac{\Delta Q}{\Delta t}$ Ladung pro Zeiteinheit

- Ladungsträgerdichte
 - Ladung eines Trägers
- Driftgeschwindigkeit
- Querschnittfläche des Leiters

Technische Stromrichtung

Die technische Stromrichtung verläuft vom Plus- zum Minuspol der Spannungsquelle. Sie ist der Elektronenbewegung entgegengerichtet.

(vgl. 98: Kraft auf einen stromdurchflossenen geraden Leiter)

Grundgesetz der Elektrolyse

$$m=rac{MQ}{zF}$$

- abgeschiedene Masse M melare Masse
 - (vgl. 110, 31.1)
- totale transportierte Ladung
- Ionenwertigkeit (vgl. 110, 31.1)
- Faraday-Konstante (vgl. Umschlag, 33)

Widerstand

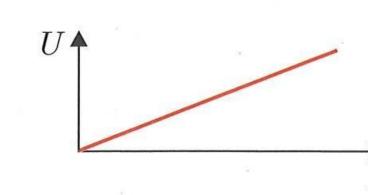
Widerstand

eines Drahtes

$$R = \frac{U}{I}$$

 $R = \varrho_{\rm el} \frac{\iota}{A}$

- Spannung
- Stromstärke
- Länge des Drahtes
- Querschnittfläche des Drahtes
- spezifischer Widerstand (vgl. 104, 27.1)


96

- Ein Plattenkondensator besteht aus zwei parallelen gleich grossen Metallplatten. Wenn man an die Platten eine Spannung anlegt, bildet sich zwischen den Platten ein homogenes elektrisches Feld. Die Formeln für den Plattenkondensator muss man nicht kennen.
- Merke: Das Ohmsche Gesetz lässt sich auch auf beliebige Teile einer Schaltung anwenden, insbesondere auf Einzelwiderstände.

Ohmsches Gesetz

Spannung U und Stromstärke I sind proportional zueinander.

$$U = RI$$
 $\frac{U}{I} = R = kons$

Die Steigung der Geraden entspricht dem Widerstand. (vgl. 12: Proportionalität)

Georg Simon Ohm (1789 - 1854)

Kombination von Widerständen

Serienschaltung/ Reihenschaltung

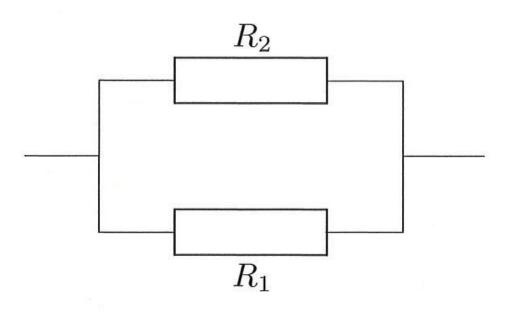
$$R = R_1 + R_2 + \ldots + R_n$$

$$U = U_1 + U_2 + \ldots + U_n$$

$$R = \sum_{n=1}^{n}$$

$$R_1$$
 R_2
 R_1
 R_2

$$I = I_1 = I_2 = \ldots = I_n$$


Parallelschaltung

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \ldots + \frac{1}{R_n}$$

$$U=U_1=U_2=\ldots=U_n$$

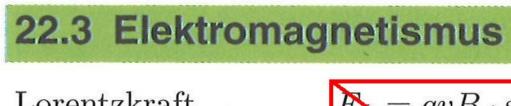
$$\frac{1}{R} = \sum_{i=1}^{n} \frac{1}{R_i}$$

$$I = I_1 + I_2 + \ldots + I_n$$

Elektrische Arbeit $W = UI\Delta t = P\Delta t$

U Spannung Stromstärke

Elektrische Leistung

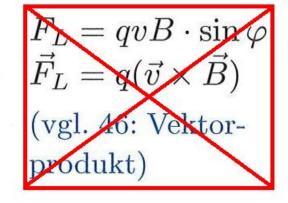

$$P = UI$$
 (3)

R Widerstand

Joulesche Wärme

$$W = RI^2 \Delta t = \frac{U^2}{R} \Delta t$$

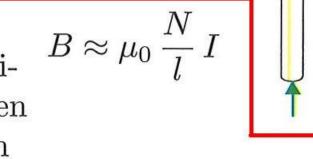
Mithilfe des Ohmschen Gesetzes erhält man weitere Formeln für die elektrische Leistung wie folgt: $P = U \cdot I = R \cdot I^2 = U^2/R$.



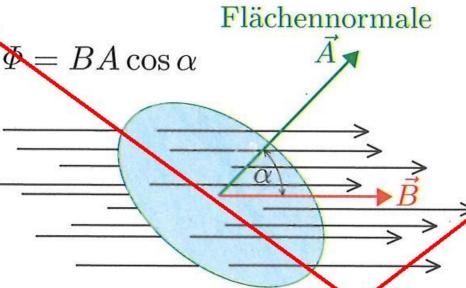
Lorentzkraft (Kraft auf bewegte Ladung)

Kraft auf einen stromdurchflossenen geraden Leiter im homogenen Magnetfeld

Magnetische Flussdichte eines unendlich langen und geraden stromdurchflossenen Leiters



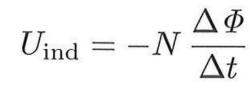
 $F\equiv IsB\cdot\sinarphi$


- bewegte Ladung
- Geschwindigkeit des geladenen Teilchens
- B magnetische Flussdichte (magnetische Feldstärke)
- φ Winkel zwischen der Feldrichtung und der Geschwindigkeit
- I Stromstärke
- s Länge des Leiterstücks
- φ Winkel zwischen der Feldrichtung und der technischen Stromrichtung
- Stromstärke
- r senkrechter Abstand vom Leiter
- μ_0 magnetische Feldkonstante
- $\mu_0 = 4\pi \cdot 10^{-7} \text{ VsA}^{-1} \text{m}^{-1}$

Magnetische Flussdichte im Inneren einer langen, schlanken stromdurchflossenen Spule

Magnetischer Fluss

- N Windungszahl
- Länge der Spule


 $\mathbf{V}\vec{F}$

- B homogenes Feld
- A durchflossene Fläche
- α Winkel zwischen der Flächen
 - normalen und der magnetischen Flussdichte

Elektromagnetische Induktion

Ändert sich der magnetische Fluss durch die Fläche einer Leiterschleife bzw. einer Spule, so wird eine Spannung induziert. Der Induktionsstrom ist seiner Ursache stets entgegengerichtet (lenzsche Regel)

Induktionsgesetz

N Windungszahl

98

Keine Berechnungen werden gefordert. Nur nach der Richtung der Lorentzkraft und nach der Gestalt von Magnetfeldern wird gefragt.

23 Moderne Physik

23.1 Spezielle Relativitätstheorie

Einsteins Postulate	Die Lichtgeschwind denselben Wert. Alle Inertialsysteme		m hat in jedem Inertialsystem
Relativitätsfaktor	$\gamma = \frac{1}{\sqrt{1 - \left(\frac{v}{c}\right)^2}}$	c	Lichtgeschwindigkeit im Vakuum
Zeitdilatation	$\Delta t = \gamma \Delta t_0$	$\Delta t, l, m_{ m rel}$	Grössen im System, in dem sich das Objekt bewegt
Längenkontraktion	$l = \frac{l_0}{\gamma}$	$\Delta t_0, l_0, m_0$	Grössen im System, in dem das Objekt ruht
Relativistische Masse	$m_{ m rel} = \gamma m_0$	m_0	Ruhemasse des Teilchens
Ruheenergie	$E_0 = m_0 c^2$		
Masse-Energie- Beziehung	$E=\gamma m_0c^2=m_{ m rel}c^2 \ =E_0+E_{ m kin}$	E_0	Gesamtenergie Ruheenergie

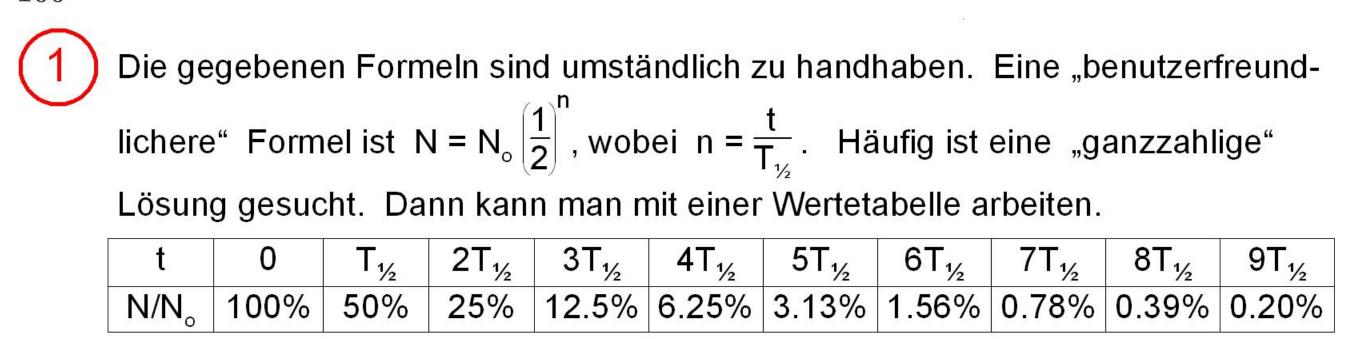
23.2 Quantenphysik

E = hf	h	Plancksches Wirkungsquantum
	$h \approx$	$6.63 \cdot 10^{-34} \mathrm{Js}$
	f	Frequenz der elektromagnetischen
.		Strahlung
$hf = W_A + rac{1}{2}mv^2$	W_A	Elektronenaustrittsarbeit
	10	(vgl. 105, 28.1)
	nv^2	kinetische Energie
		des Elektrons
$\lambda = \frac{h}{}$	λ	Wellenlänge
p	p	Impuls
$\Delta x \cdot \Delta p_x \geq \frac{h}{4}$	Δx	Ortsunschärfe
4π	Δp_x	Impulsunschärfe bei gleichzeitiger
$\Delta E \cdot \Delta t \geq \frac{h}{t}$		Messung von Δx und Δp_x
-4π	ΔE	Energieunschärfe
	Δt	Zeitintervall, in dem ΔE gemessen
		wird
	$hf = W_A + rac{1}{2}mv^2$ $\lambda = rac{h}{p}$ $\Delta x \cdot \Delta p_x \geq rac{h}{4\pi}$ $\Delta E \cdot \Delta t \geq rac{h}{4\pi}$	$h pprox f$ $h \ p$

23.3 Atomphysik

Bohrsches Modell des Wasserstoffatoms	
Bahnradien $r_n = r_1 n^2$	$n = 1, 2, 3, \dots$
	$r_1 \approx 0.0529 \mathrm{nm}$ Bohrscher Radius
Energie des Elektrons $E_n = E_1 \frac{1}{m^2}$	$E_1 pprox -13.6\mathrm{eV}$
im Niveau n	
Bohrsche $hf = E_m - E_n $	$E_n > E_m$ Emission
Frequenzbedingung	$E_n < E_m$ Absorption

23.4 Kernphysik


Nuklidsymbolik	$_{Z}^{A}X$	X Elementsymbol
		A Massenzahl
		Z Kernladungszahl
Zerfallsgesetz	$N = N_0 e^{-\lambda t}$	N Anzahl Kerne
		λ Zerfallskonstante
	$T_{1/2} = \frac{\ln 2}{\lambda}$	$T_{1/2}$ Halbwertszeit
(1)		(vgl. 51: Exponentialfunktionen;
		Logarithmusfunktionen;
THE STATE OF THE S		vgl. 105, 28.2)

Wichtigste radioaktive Zerfallsarten

William Bote radioa			
α -Zerfall	$_{Z}^{A}X \longrightarrow _{Z-2}^{A-4}X + \alpha$	α	He-Kern
β^- -Zerfall	$_{Z}^{A}X\rightarrow_{Z+1}^{A}X+e^{-}+\bar{\nu}$	$e^- \ ar{ u}$	Elektron aus dem Kern Antineutrino
$\gamma ext{-Emission}$	$X^* \to X + \gamma$	X^* γ	angeregter Kern elektromagnetische Strahlung
Dosimetrie			

Dosimetrie		
Aktivität	$A=rac{\Delta N}{\Delta t}$	ΔN Anzahl Zerfälle im Zeitintervall Δt
Energiedosis	$D = \frac{\Delta E}{m}$	ΔE absorbierte Strahlungsenergie m absorbierende Masse
Äquivalentdosis	$H = q \cdot D$	q Qualitätsfaktor, hängt von \det Strahlungsart und dem
		bestrahlten Gewebe ab

100

24 Mechanik

24.1 Reibungszahl μ (vgl. 83: Gleitreibungkraft; Haftreibungskraft)									
Materialkombination	Gleit- reibung	Haft- reibung	Materialkombination	Gleit- reibung	Haft- reibung				
Holz/Holz Stahl/Stahl Stahl/Eis	$0.4 \\ 0.1 \\ 0.014$	$0.6 \\ 0.15 \\ 0.027$	Pneu/trockene Strasse Pneu/nasse Strasse Pneu/Eis	$0.6 \\ 0.3 \\ 0.05$	1.0 0.5 0.1				

24.2 Dichte <i>ρ</i> (vgl. 88: Dichte)				
Feste Stoffe bei 20°C	${\rm kg/m^3}$	Flüssigkeiten bei 20°C	;	${\rm kg/m^3}$
Aluminium	2700	Aceton	$(CH_3)_2CO$	791
Beton	2200	Benzol	C_6H_6	879
Blei	11340	Benzin		744
Buchen- und Eichenholz (trocken)	700	Diethylether	$(C_2H_5)_2O$	714
Diamant	3510	Ethanol	C_2H_5OH	789
Eis (bei 0°C)	917	Glycerin	$C_3H_5(OH)_3$	1261
Eisen	7860	Heizöl		840
Glas	2500	Methanol	$\mathrm{CH_{3}OH}$	792
Gold	19290	Olivenöl		920
Graphit	2240	Quecksilber	Hg	13546
Invar (64 % Fe, 36 % Ni)	8 000	Schwefelsäure	$\mathrm{H_2SO_4}$	1840
Kalkstein (Marmor)	2700	Tetrachlorkohlenstoff	CCl_4	1594
Kork	300	Wasser	H_2O	998
Kupfer	8920	Wasser, schwer	D_2O	1105
Messing (65 % Cu, 35 % Zn)	8470			
Natrium	970	Gase bei 0°C und 1.01	2.10^5 Ps	${ m kg/m^3}$
Nickel	8 900	Gase bero C und 1.01	13·10 1 a	Kg/III
Paraffin	900	Ammoniak	NH_3	0.771
Platin	21450	Argon	Ar	1.784
Plexiglas	1180	Butan	$\mathrm{C_4H_{10}}$	2.732
Porzellan	2400	Erdgas		0.83
Quarzglas	2200	Helium	${ m He}$	0.1785
Silber	10500	Kohlendioxid	CO_2	1.977
Silizium	2420	Kohlenmonoxid	CO	1.250
Styropor	20	Luft		1.293
Tannenholz (trocken)	500	Methan	CH_4	0.717
Uran	18700	Neon	Ne	0.900
Wolfram	19300	Propan	$\mathrm{C_{3}H_{8}}$	2.010
Ziegelstein	1600	Sauerstoff	O_2	1.429
Zink	7140	Schwefeldioxid	SO_2	2.926
Zinn	7290	Stickstoff	N_2	1.250
		Wasserstoff	H_2	0.0899
		Xenon	Xe	5.897

25 Wärme

25.1 Thermische Eigenschaften einiger Stoffe

- α Längenausdehnungskoeffizient bei 20 $^{\circ}\mathrm{C}$
- Volumenausdehnungskoeffizient bei 20 °C
- c_p Spezifische Wärmekapazität bei 20 $^{\circ}$ C
- C_p Molare Wärmekapazität bei 20 °C $(c_p, C_p$: Werte bei konstantem Druck)
- ϑ_f Schmelztemperatur
- L_f spezif. Schmelzwärme
- ϑ_V Siedetemperatur
- L_v spezif. Verdampfungswärme

 λ Wärmeleitfähigkeit bei 20 °C (vgl. 103, 25.3)

bei

Normaldruck

					2		
Festkörper	$\frac{\alpha}{10^{-6}{ m K}^{-1}}$	c_p $Jkg^{-1} K^{-1}$	${\overset{\vartheta}{\circ}}{}^f_{\rm C}$	$L_f \ 10^5 { m Jkg}^{-1}$	${\stackrel{artheta}{\circ}}{^{ m C}}{^{ m C}}$	L_v $10^5 \mathrm{Jkg}^{-1}$	$rac{\lambda}{ m Wm^{-1}K^{-1}}$
Aluminium	23.8	896	660.1	3.97	2467	109	289
Blei	31.3	129	327.4	0.23	1740	86	34.8
$\mathrm{Eis}\ (0^{\circ}\mathrm{C})$	37.0	2100	0	3.338	100	22.5	2.2
Eisen	12.0	450	1535	2.77	2750	63.4	80
Glas	8.5	800	1000	2.11	2100	00.1	1.0
Invar	0.2 - 1.6	460	1427	5.15			11 Y
Kupfer	16.8	383	1083	2.05	2567	47.9	390
Silber	19.7	235	960.8	1.045	2212	23.5	428
Silizium	7.6	705	1410	1.654	2355	140.5	153
Stahl V2A	16.0	510	1				1/4
Wolfram	4.3	134	3380	1.92	5660	43.5	1 7 7
Flüssigkeiten	γ	c_p	ϑ_f	L_f	ϑ_V	L_v	
	$10^{-3}{\rm K}^{-1}$	$\mathrm{Jkg}^{-1}\mathrm{K}^{-1}$	$^{\circ}\mathrm{C}$	$10^5\mathrm{Jkg}^{-1}$	$^{\circ}\mathrm{C}$	$10^5\mathrm{Jkg}^{-1}$	${ m Wm^{-1}K^{-1}}$
Aceton	1.49	2160	-94.86	0.98	56.25	5.25	0.162
Benzin		2020	-5030		$67 \dots 100$		0.13
Ethanol	1.10		-114.5	1.08	78.33	8.40	0.165
Glycerin	0.5	2390	18.4	2.01	290.5	8.54	0.285
Heizöl EL	0.92		-5		$200 \dots 350$		0.14
Quecksilber	0.182	139	-38.87	0.118	356.58	2.85	8.2
Wasser	0.21	4182	0	3.338	100.0	22.56	0.598
Gase	C_p	c_p	ϑ_f	L_f	ϑ_V	L_v	X
Parameter Control	$\mathrm{Jmol}^{-1}\mathrm{K}^{-1}$	$\rm Jkg^{-1}K^{-1}$	$^{\circ}\mathrm{C}$	$10^5\mathrm{Jkg}^{-1}$	$^{\circ}\mathrm{C}$	$10^5\mathrm{Jkg}^{-1}$	${\rm Wm^{-1}K^{-1}}$
Ammoniak	36.8	2160	-77.7		-33.35	13.70	0.022
Helium	20.9	5230	-272.2	5 -	-268.93	20	0.143
Kohlendioxid	36.8	837	subl.	1.81	-78.45	1.37	0.015
Luft	29.1	1005		_	-191.4	2	0.024
Methan	35.6		-182.52	0.59	-161.5	5.10	0.030
Sauerstoff	29.3		-218.79	0.14	-182.97	2.13	0.024
Stickstoff	29.1		-210.00	0.26	-195.82	1.98	0.024
Wasserstoff	28.9	14320 -	-259.20	60 -	-252.77	450	Ø.171

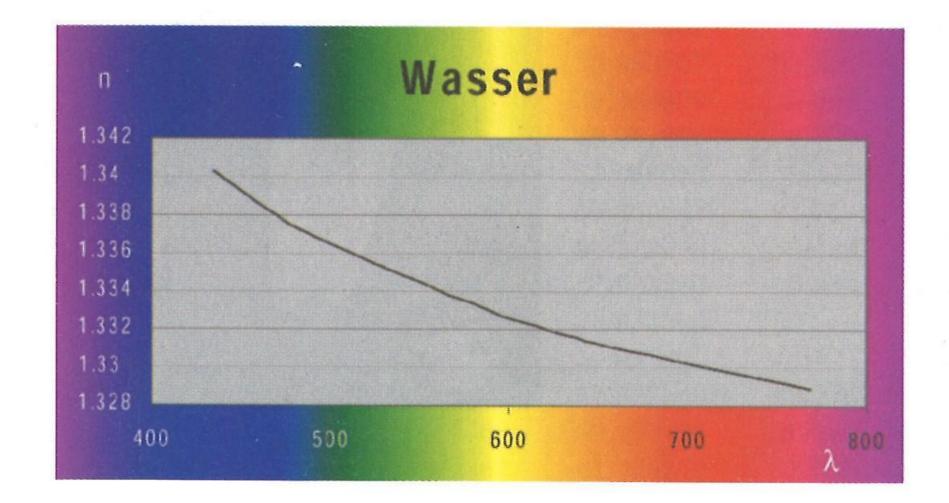
25.2 Heizwert H_u * (ohne Kondensation des Wasserdampfes) in MJkg⁻¹

Braunkohle	8.9	Benzin	42	Butan	45.7
Holz, trocken	15.5	Ethanol	26.7	Erdgas	38
Steinkohle	29.3	Heizöl	42.7	Wasserstoff	120

^{*}Der Brennwert H_0 (mit Kondensation des Wasserdampfes) ist etwas höher.

25.3 Wärmeleitfähigkeit λ von Baustoffen bei 20 °C in Wm⁻¹ K⁻¹ (vgl. 102, 25.1)

Backstein Beton Fongtongles	$0.44 \\ 1.4 \\ 1.0$	Holztäfer Kork Leichtbeton	$0.15 \\ 0.045 \\ 0.22$	Stahlbeton Steinwolle	1.8
Fensterglas	1.0	Leichtbeton	0.22	Polystyrolschaum	0.040


25.4 Emission	nszahl ε von (Oberflächen b	ei 20°C							
Aluminium, poliert0.04Kupfer, oxidiert0.6Menschliche Haut0.98Aluminium, oxidiert0.3Anstrichfarben0.9Vegetation0.95Kupfer, poliert0.04Sand0.75Wasser0.96										
25.5 Druck p_s	25.5 Druck p_s und Dichte ϱ_s des gesättigten Wasserdampfes									
${f ^{artheta}_{ m C}}$ ${f ^{p_s}_{ m Pa}}$	gm^{-3} θ	p_s Pa	$rac{arrho_s}{ m gm}^{-3}$	$\begin{array}{cc} \vartheta & p_s \\ ^{\circ}\mathrm{C} & \mathrm{Pa} \end{array}$	$ ho_s ho_{ m m}^{-3}$					
	$egin{array}{cccc} 2.36 & 15 \\ 3.32 & 20 \\ 4.85 & 25 \\ 6.82 & 30 \\ 9.41 & 35 \\ \hline \end{array}$	2337 3172 4242	$12.86 \\ 17.32 \\ 23.10 \\ 30.39 \\ 39.63$	$\begin{array}{ccc} 40 & 7378 \\ 45 & 9586 \\ 50 & 12340 \\ 75 & 39250 \\ 100 & 101325 \end{array}$	$50.17 \\ 65.45$					

26 Optik

26.1 Brechzahl n gegen Luft bei 20 °C für $\lambda = 589.3$ nm

Diamant	2.417 1.310	Plexiglas	1.491	Zuckerlösung 30 %	1.38
Eis		Quarzglas	1.458	80 %	1.49
Ethanol Fensterglas	$\begin{array}{c} 1.362 \\ \approx 1.5 \end{array}$	Steinsalz Wasser	$1.544 \\ 1.333$	Luft gegen Vakuum	1.00027

26.2 Brechzahldispersion $n(\lambda)$ von Wasser, Bleiglas und Diamant

Wellenlänge	SF4*	Diamant
λ	\overline{n}	\overline{n}
nm		16
434	1.792	2.454
486	1.775	2.433
589	1.755	2.417
633	1.750	2.410
656	1.747	2.408
768	1.739	2.401

^{*}Schwerflint (Bleiglas)

103

27 Elektrizität

27.1 Spezifischer elektrischer Widerstand ϱ_{el}

von Leitern und Halbleitern bei 20 °C

	$\Omega \mathrm{m}$		$\Omega \mathrm{m}$		$\Omega \mathrm{m}$
Aluminium		Konstantan	49 · 10	8 Silizium	$1.7\cdot 10^4$
Blei	$21 \cdot 10^{-8}$	Kupfer (rein)	$1.7 \cdot 10^{-}$	8 Wolfram	$5.3\cdot10^{-8}$
Eisen (rein)	$9.7 \cdot 10^{-8}$	Messing	$7 \cdot 10^{-}$	8 Wolfram (1000 °C)	$33 \cdot 10^{-8}$
Germanium (rei	n) = 0.14	Nickel	$7.8 \cdot 10^{-}$	8 Wolfram (2000 °C)	$70 \cdot 10^{-8}$
Gold	$2.2 \cdot 10^{-8}$	Platin	$10 \cdot 10^{-}$	8 Wolfram (3000 °C)	$113 \cdot 10^{-8}$
Kohle	$5000 \cdot 10^{-8}$	Silber	$1.59 \cdot 10^-$	8 Zink	$5.8\cdot 10^{-8}$

27.2 Spezifischer elektrischer Widerstand $\varrho_{\rm el}$ für Isolierstoffe bei 20 °C und Dielektrizitätszahl ε_r

$rac{arrho_{ m el}}{\Omega{ m m}}$	$arepsilon_r$		$rac{arrho_{ m el}}{\Omega{ m m}}$	ε_r
$1\cdot 10^{18}$	2.6	Polyvinylchlorid	$1 \cdot 10^{13}$	6.1
$5\cdot 10^{14}$	7	Quarzglas	$3 \cdot 10^{14}$	4
$1\cdot 10^{16}$	3.5	Wasser		80
$1\cdot 10^{13}$	3.4	Luft (Normdruck)		1.0006
	$\Omega \mathrm{m}$ $1 \cdot 10^{18}$ $5 \cdot 10^{14}$ $1 \cdot 10^{16}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\Omega \mathrm{m}$ $1 \cdot 10^{18}$ 2.6 Polyvinylchlorid $5 \cdot 10^{14}$ 7 Quarzglas $1 \cdot 10^{16}$ 3.5 Wasser	$\Omega { m m}$ $\Omega { m m}$ $1 \cdot 10^{18}$ 2.6 Polyvinylchlorid $1 \cdot 10^{13}$ $5 \cdot 10^{14}$ 7 Quarzglas $3 \cdot 10^{14}$ $1 \cdot 10^{16}$ 3.5 Wasser

28 Moderne Physik

Marie Curie-Sklodowska (1867 - 1934)

Lise Meitner (1878 - 1968)

	28.1 Elektronenaustrittsarbeit W_A ; langwellige Grenze λ_0 (äusserer Photoeffekt)											
	$W_A \ { m eV}$	$\lambda_0 \ \mathrm{nm}$		$egin{array}{ccc} W_A & \lambda_0 \ { m eV} & { m nm} \end{array}$								
Aluminium	4.20	295	Nickel	5.09 243								
Caesium	1.94	639	Silber	4.43 273								
Kupfer	4.84	256	Zink	4.34 285								

28.2 Ausgewählte Nuklide

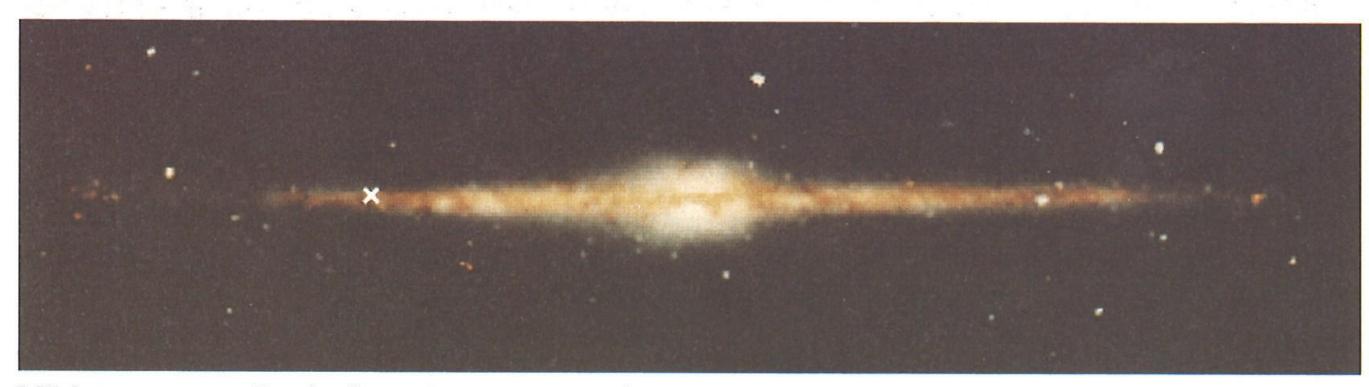
28.2	2 Ausgewa	nite i	VUKIIC	ae				
\mathbf{Z}	Ordnungszah	1		rel. H.	relative Hä	ufigkeit		
Sy	chemisches S	ymbol		$T_{1/2}$	Halbwertsz	eit bei nicht st	abilen Isotope	n
Å	Nukleonenzal			1/2	Control of the contro	Tag, m Minute		
m_a	Atommasse in			Energie		rgie in MeV	,	
M	molare Masse		kmol			810 111 1120 1		
$\overline{\mathrm{Z}}$	Name	Sy	A	m_a ; M	rel. H.	$T_{1/2}$	Zerfallsart	Energie
1	Wasserstoff	H	1	1.0078250	99.989			
			2	2.0141018	0.015			
			3	3.0160493		12.33 a	eta^-	0.0186
2	Helium	He	3	3.0160293	0.00014			
			4	4.0026033	99.999			
6	Kohlenstoff	\mathbf{C}	12	12.000000	98.93			
			13	13.003355	1.07			
			14	14.003242		5730 a	β^-	0.1565
7	Stickstoff	N	14	14.003074	99.632			
			15	15.000109	0.368			
8	Sauerstoff	O	16	15.994915	99.757		e in	
			17	16.999132	0.038			
			18	17.999160	0.205			*
19	Kalium	\mathbf{K}	39	38.963707	93.258			
			40	39.963999	0.012	$1.28 \cdot 10^9 \text{ a}$	$eta^-\gamma$	1.311
			41	40.961826	6.730			
26	Eisen	Fe	54	53.939615	5.845			
			56	55.934942	91.754			
			57	56.935399	2.119			
		A. II	58	57.933280	0.282			R
27	Kobalt	Со	59	58.933200	100			
	Cont		60	59.933822		5.271 a	$eta^-\gamma$	2.824
28	Nickel	Ni	58	57.935348	68.0767		×	
			60	59.930791	26.223			
			62	61.928349	3.635			

105

28.2 Ausgewählte Nuklide (Fortsetzung)

Z	Name	Sy	A	m_a ; M	rel. H.	$T_{1/2}$	Zerfallsart	Energie
29	Kupfer	Cu	63	62.929601	69.17	,	70	- A-17-
			65	64.927794	30.83		2	
32	Germanium	Ge	70	69.924250	20.84			
			72	71.922076	27.54			
			73	72.923459	7.73			
			74	73.921178	36.28			
			76	75.921403	7.61			
38	Strontium	Sr	84	83.913425	0.56			
			86	85.909265	9.86		141	
			87	86.908879	7.00			
			88	87.905614	82.58			
			90	89.907738		28.79 a	β^-	0.546
47	Silber	Ag	107	106.905093	51.839			
			108	107.905954		$2.37 \mathrm{m}$	eta^-	1.649
			109	108.904756	48.161			
			110	109.906111		$24.6 \mathrm{\ s}$	$eta^-\gamma$	2.892
53	Iod	I	127	126.904468	100			
			128	127.905805		$25.00 \mathrm{m}$	$\beta^-\gamma$	2.118
			131	130.906125		8.040 d	$\beta^-\gamma$	0.971
55	Caesium	Cs	133	132.905447	100		, ,	
			137	136.907085		30.07 a	$eta^-\gamma$	1.176
78	Platin	Pt	192	191.961035	0.782		, ,	
			194	193.962664	32.967			
			195	194.964774	33.832			
			196	195.964935	25.242			
			198	197.967876	7.163			
79	Gold	Au	197	196.966552	100			
			198	197.968225		2.695 d	$\beta^-\gamma$	1.372
80	Quecksilber	$_{\mathrm{Hg}}$	196	195.965815	0.15		, ,	
			198	197.966752	9.97			
			199	198.968262	16.87			
			200	199.968309	23.10			
			201	200.970285	13.18			
			202	201.970626	29.86			
	A		204	203.973476	6.87			
82	Blei	Pb	204	203.973029	1.4			
			206	205.974449	24.1			
			207	206.975881	22.1			
		*	208	207.976636	52.4			
			210	209.984174		22.3 a	$eta^-\gamma$	0.0635
86	Radon	Rn	220	220.011384		$55.6 \mathrm{\ s}$	α	6.29
			222	222.017570		3.824 d	α	5.49
92	Uran	U	235	235.043922	0.720	$7.04 \cdot 10^8 \text{ a}$	$lpha\gamma$	4.679
	17.		238	238.050784	99.2745	$4.46 \cdot 10^9 \text{ a}$	$\alpha\gamma$	4.2
94	Plutonium	Pu	239	239.052156		$2.41 \cdot 10^4 \text{ a}$	$\alpha\gamma$	5.2

29 Verschiedene Einheiten und Umrechnungen


Länge			Geschwindigkeit, Masse		
1 in (inch, Zoll) 1 ft (foot) = 12 in 1 mi (mile) 1 Seemeile	$= 2.540 \cdot 10^{-2}$ $= 0.3048$ $= 1609.344$ $= 1852$	m m m	$1 \text{ Knoten} = 1.852 \text{ kmh}^{-1}$ $1 \text{ lb (pound mass)}$ 1 ct (Karat)	≈ 0.5411 $= 0.45359$ $= 2 \cdot 10^{-4}$	ms ⁻¹ kg kg
Energie, Leistung			Kraft, Druck		
1 cal 1 kWh 1 Elektronenvolt (eV) 1 PS Temperatur Celsius aus Fahrenheit	$= 4.1868$ $= 3.6 \cdot 10^{6}$ $= 1.602 \cdot 10^{-19}$ ≈ 735.5 $\vartheta_{C} = \frac{5}{9} \vartheta_{F} - 17$	W	1 lb (pound force) 1 bar 1 atm 1 mmHg = 1 Torr 1 mmWS (Wassersäule) 1 psi (pound-force per square in	$= 4.448$ $= 10^{5}$ $= 101325$ ≈ 133.3 $= 9.806$ $= 6.8947 \cdot 3$ ch)	N Pa Pa Pa Pa 10 ³ Pa

30 Astronomie

30.1 Längen- und Zeitmasse		
 1 Astronomische Einheit (AE) (mittlerer Abstand Sonne E 1 Lichtjahr (LJ) 1 Parallaxensekunde/Parsec (pc) (Entfernung, aus der der Erdbahnradius unter dem Wink-Bogensekunde (arc 1" = 4.85 · 10⁻⁶ rad) erscheint) 		$1.496 \cdot 10^{11} \text{ m}$ $9.461 \cdot 10^{15} \text{ m}$ $3.086 \cdot 10^{16} \text{ m}$
1 d (mittlerer Sonnentag) 1 Sterntag 1 siderisches Jahr (auf das Koordinatensystem der Fixsterne bezogen) 1 tropisches Jahr (auf den Frühlingspunkt bezogen)	Section Designation of the Control o	86400 s 86164.09 s $4 \text{ d} = 3.1558 \cdot 10^7 \text{ s}$ $0 \text{ d} = 3.1557 \cdot 10^7 \text{ s}$
Einige Distanzangaben Proxima Centauri (nächster Stern) Sirius (hellster Stern, αCMa) Orionnebel M42 Andromeda M31 Rand des bekannten Universums (2000)		4.22 LJ 8.6 LJ 1800 LJ $2.540 \cdot 10^6 \text{ LJ}$ 10^{10} LJ

106

30.2 Kosmische Umgebung der Erde Milchstrasse $1.4 \cdot 10^{12} \cdot m_{\mathrm{Sonne}}$ Durchmesser 111 000 LJ Gesamtmasse Dicke im Zentrum $2 \cdot 10^{11} \cdot m_{\mathrm{Sonne}}$ $16\,000~\mathrm{LJ}$ Scheibenmasse $7 \cdot 10^{-20} \text{ kgm}^{-3}$ Dicke aussen $3\,000~{\rm LJ}$ Mittlere Dichte $225~\mathrm{kms^{-1}}$ Halodurchmesser $160\,000\;{\rm LJ}$ Rotationsgeschwindigkeit am Ort der Sonne Sonne $6.96 \cdot 10^8 \text{ m}$ Radius Äquator Effekt. Oberflächentemperatur 5778 K $1.989 \cdot 10^{30} \text{ kg}$ $3.826 \cdot 10^{26} \text{ W}$ Masse Strahlungsleistung 274 ms^{-2} Fallbeschleunigung $1380 \; \mathrm{Wm^{-2}}$ Solarkonstante S $1.62 \cdot 10^5 \text{ kgm}^{-3}$ Dichte im Zentrum Abstand vom $25\,000~\mathrm{LJ}$ $2.48 \cdot 10^{11} \text{ bar}$ Druck im Zentrum galaktischen Zentrum $1.57 \cdot 10^7 \mathrm{\ K}$ Temperatur im Zentrum Abstand (nördlicher) von 40 LJder galaktischen Hauptebene Erde (Bezugswerte für Tabelle 30.3) Radius Fluchtgeschwindigkeit $11\,186~{\rm ms}^{-1}$ Äquator $6.378 \cdot 10^6 \text{ m}$ an der Erdoberfläche $6.356 \cdot 10^6 \text{ m}$ - Pol Mittlere Oberflächentemperatur $288~\mathrm{K}$ $1.496 \cdot 10^{11} \text{ m}$ - Volumengleiche R_{\oplus} $6.371 \cdot 10^6 \text{ m}$ grosse Bahnhalbachse Kugel (1 AE) M_{\oplus} 5.974 · 10²⁴ kg Masse Numerische Exzentrizität ε 0.01671Fallbeschleunigung Siderische Umlaufzeit T_{\oplus} 365.25636 d 9.80665 ms^{-2} - Normwert 9.7803 ms^{-2} – am Äquator 9.8322 ms^{-2} – am Nordpol Mond

Grosse Bahnhalbachse

siderische Umlaufzeit

Numerische Exzentrizität ε

 $1.7375 \cdot 10^6 \text{ m}$

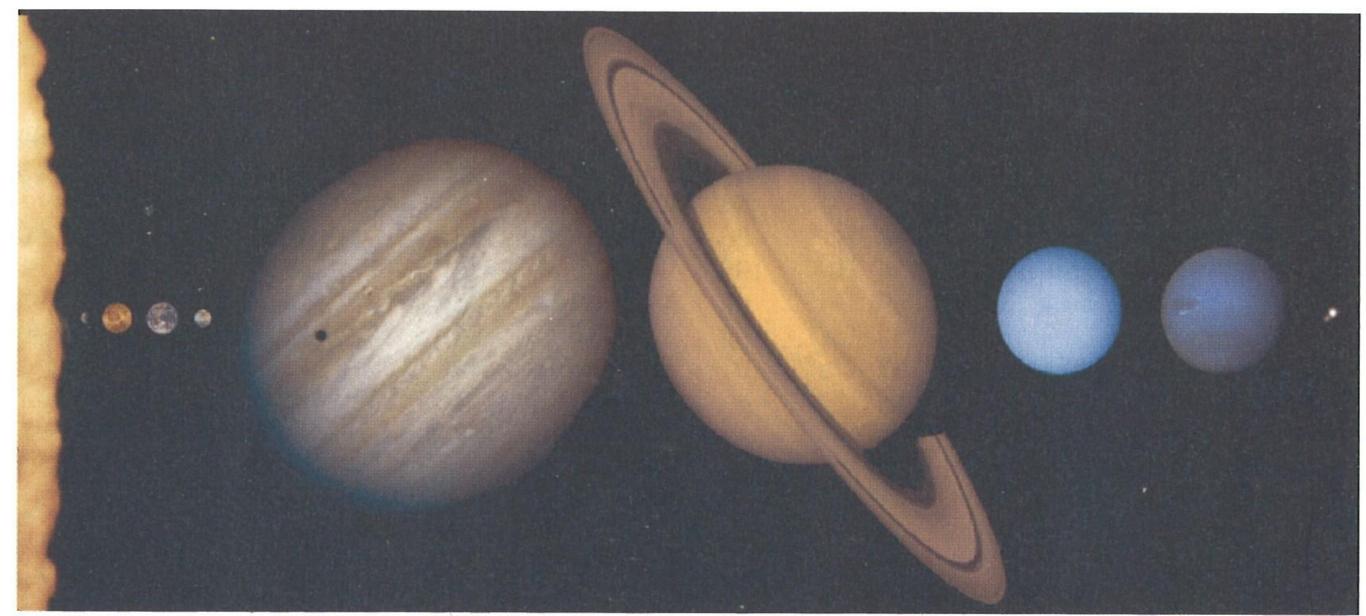
 $7.349 \cdot 10^{22} \text{ kg}$

 1.622 ms^{-2}

Milchstrasse: $\times = \text{Ort der Sonne in ca. } 25\,000\,\text{LJ}$ Abstand vom galaktischen Zentrum; Bildbreite ca. $100\,000\,\text{LJ}$

108

Radius


Masse

Fallbeschleunigung

30.3 Planeten (R, M und g relativ zu den Erddaten) (vgl. 108, 30.2)

- R Radius der festen bzw. sichtbaren Oberfläche
- M Masse
- g Fallbeschleunigung bei R
- T_O mittlere Oberflächentemperatur in K
- a grosse Bahnhalbachse in AE
- $\varepsilon\,$ numerische Exzentrizität der
- Umlaufbahn
- T siderische Umlaufzeit in Jahren

		R/R_{\oplus}	M/M_{\oplus}	g/g_{\oplus}	T_O	a	ε	T
Merkur	Ϋ́	0.383	0.0553	0.377	440	0.3871	0.20563	0.241
Venus	9	0.949	0.851	0.903	737	0.7233	0.00673	0.615
Erde	\oplus	1	1	1	288	1	0.01671	1
Mars	07	0.533	0.1075	0.380	210	1.5237	0.09341	1.881
Jupiter	4	11.21	317.83	2.64	165	5.2034	0.04839	11.862
Saturn	ħ	9.45	95.162	1.14	134	9.5371	0.05415	29.457
Uranus	3	4.01	14.54	0.92	76	19.19	0.04717	84.01
Neptun	8	3.88	17.2315	1.15	72	30.07	0.00859	164.78
Pluto	Р	0.18	0.002	0.065	50	39.48	0.24881	247.67

Planetengrössen massstäblich; Abstände nicht massstäblich

109

 $3.844 \cdot 10^8 \text{ m}$

0.0549

27.322 d

31 Chemie

31.1 Chemische Elemente

Ordnungszahl

Atommasse des natürlichen Isotopengemisches in der atomaren Masseneinheit $u = 1/12^{12}$ C) In eckigen Klammern: Nukleonenzahl des Isotops mit der längsten Halbwertszeit.

molare Masse in kg/kmol

Atomradius in Picometer (10^{-12} m) Ionenradius in Picometer (10^{-12} m)

Name		\mathbf{Z}	m_a ; M	r_a	Ion	r_i	Name		Z	m_a ; M	r_a	Ion	r_i
				pm		pm				1	pm		$\underline{\text{pm}}$
Actinium	Ac	89	[227]				Hassium	Hs	108	[265]			
Aluminium	Aluminium Al $13 26.982 143 Al^{3+} 50$		Helium	${\rm He}$	2	4.003							
Americium	Am	95	[243]				$\operatorname{Holmium}$	Ho	67	164.930			
Antimon	Sb	51	121.75	141			Indium	In	49	114.82	162	In^{3+}	81
Argon	Ar	18	39.948				Iod	I	53	126.905	133	I^-	216
Arsen	As	33	74.922	121			Iridium	Ir	77	192.22			
Astat	At	85	[210]	140			Kalium	\mathbf{K}	19	39.098	231	K^{+}	133
Barium	Ba	56	137.33	217	Ba^{2+}	135	Kobalt	Co	27	58.933	125	Co^{2+}	74
Berkelium	Bk	97	[247]				Kohlenstoff	\mathbf{C}	6	12.011	77		
Beryllium	Be	4	9.012	112	Be^{2+}	31	Krypton	Kr	36	83.80			#
Bismut	Bi	83	208.981			*	Kupfer	Cu	. 29	63.546	128	Cu^{2+}	69
Blei	Pb	82	207.2	175	Pb^{4+}	84	Lanthan	La	57	138.906		La^{3+}	115
Bohrium	Bh	107	[262]			84	Lawrencium	Lr	103	[262]			
Bor	В	5	10.81	88	B^{3+}	20	Lithium	Li	3	6.941	152	Li^+	60
Brom	Br	35	79.904	114	${ m Br}^-$	195	Lutetium	Lu	71	174.97			
Cadmium	Cd	48	112.40	149	Cd^{2+}	97	Magnesium	Mg	12	24.305	160	Mg^{2+}	65
Caesium	Cs	55	132.905	262	Cs^+	169	Mangan	$\overline{\mathrm{Mn}}$	25	54.938	129	Mn^{2+}	80
Calcium	Ca	20	40.08	197	Ca^{2+}	97	Meitnerium	Mt	109	[266]			
Californium	Cf	98	[251]				Mendelevium	Md	101	258			
Cer	Ce	58	140.12				Molybdän	Mo	42	95.94			
Chlor	Cl	17	35.453	99	Cl^-	181	Natrium	Na	11	22.990	186	Na^{+}	95
Chrom	Cr	24	51.996	125	Cr^{3+}	69	Neodym	Nd	60	144.24			
Curium	Cm	96	[247]				Neon	Ne	10	20.179			
Dubnium	Db ·	105	[262]				Neptunium	Np	93	237.048			
Dysprosium	Dy	66	162.50				Nickel	Ni	28	58.71	124	Ni^{2+}	72
Einsteinium	Es	99	[252]				Niob	Nb	41	92.906			
Eisen	Fe	26	55.847	126	Fe^{2+}	76	Nobelium	No	102	[259]			
Erbium	Er	68	167.26			5.71	Osmium	Os	76	190.2			
Europium	Eu	63	151.96				Palladium	Pd	46	106.4			
Fermium	Fm	100	[257]			e .	Phosphor	P	15	30.974	110		
Fluor	\mathbf{F}	9	18.998	64	F^-	136	Platin	Pt	78	195.09			
Francium	Fr	87	[223]				Plutonium	Pu	94	[244]			
Gadolinium	Gd	64	157.25				Polonium	Po	84	[209]	140		
Gallium	Ga	31	69.72	122	Ga^{3+}	62	Praseodym	\Pr	59	140.908			
Germanium	Ge	32	72.59	122	Ge^{4+}	53	Promethium	Pm	61	[145]	4		
Gold	Au	79	196.967	144	Au^+	137	Protactinium	Pa	91	[231]			*
Hafnium	Hf	72	178.49				Quecksilber	$_{\mathrm{Hg}}$	80		150	Hg^{2+}	110

110

In der Physik dient das Periodensystem der Elemente (PSE) vor allem zur Bestimmung von Tochterkernen beim radioaktiven Zerfall.

Chemische Elemente (Fortsetzung)

Name		\mathbf{Z}	$m_a; M$	r_a	Ion	r_i	Name	-	Z	$m_a; M$	r_a	Ion	r_i
			270 .	pm		pm					pm		pm
Radium	Ra	88	226.025				Technetium	Tc	43	98.906			
Radon	Rn	86	[222]				Tellur	Te	52	127.60	137	Te^{2-}	221
Rhenium	Re	75	186.2				Terbium	Tb	65	158.925			
Rhodium	Rh	45	102.906				Thallium	Tl	81	204.37	171	Tl^{3+}	95
Rubidium	Rb	37	85.468	244	Rb^+	148	$\operatorname{Thorium}$	Th	90	232.038			
Ruthenium	Ru	44	101.07				Thulium	Tm	69	168.934			
Rutherfordium	Rf	104	[261]				Titan	Ti	22	47.90	146	Ti^{2+}	90
Samarium	Sm	62	150.4				Uran	U	92	238.029			
Sauerstoff	O	8	15.999	66	O^{2-}	140	Vanadium	\mathbf{V}	23	50.941	131	V^{2+}	88
Scandium	Sc	21	44.956	160	Sc^{3+}	81	Wasserstoff	\mathbf{H}	1	1.0079	30		
Schwefel	\mathbf{S}	16	32.06	104	S^{2-}	184	Wolfram	W	74	183.85			
Seaborgium	Sg	106	[263]				Xenon	Xe	54	131.30			
Selen	Se	34	78.96	117	Se^{2-}	198	Ytterbium	Yb	70	173.04			
Silber	Ag	47	107.868	144	Ag^+	126	Yttrium	Y	39	88.906	180	Y^{3+}	93
Silizium	Si	14	28.086	117			Zink	Zn	30	65.38		Zn^{2+}	
Stickstoff	N	7	14.007	70			Zinn	Sn	50	118.69			71
Strontium	Sr	38	87.62	215	Sr^{2+}	113	Zirkon	Zr	40	91.22			
Tantal	Ta	73	180.948	our over mirration.	and definition could.	extranscript 100 mg/s		- 					

31.2 Periodensystem

		.										<u> </u>					
Hai	upt-						-gruppen										
I	II		H Gas Nichtmetall											V	VI	VII	VIII
1			Br Flüssigkeit Halbmetall														2
H		-	C Feststoff Metall														He
3	4	•	5 6 7 8 9													10	
Li	Be						В	C	N	0	F	Ne					
11	12		Nebengruppen											15	16	17	18
Na	Mg				(Übe	ergang	gsmet	talle)				Al	Si	P	S	Cl	Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
87	88	89	104	105	106	107	108	109									
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt								0	
											1						
					La	nthan	oide	$(1. Z_0)$	eile) 1	und A	ctino	oide (2. Ze	ile)		8	
		58 50 60 61 69 69 64 65 66										67	CO	CO	70	77.1	

Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 98 | 99 | 100 | 101 | 102 | 103 94 95 96 U Np Pu Am Cm Bk Cf Es Fm Md No Lr