
Musterprufung

- Themen: Betragsfunktion
 - · Betragsgleichungen
- 1.) Wie gross ist
 - a) |4|?
 - b) 1-3/?
 - c) |4-|-4||?
 - $(x) \times +|x-4|^{2}$
 - e) /y-x/?
- 2.) Vervollständige untenstehende Wertetabelle und skizziere die Funktion, Wenn y(x) = |x + |x - 2|

-	X	y
	0	
	1	
	2	
	3	
	4	
	5	
	6	

3.) Berechne die Lösungsmenge von

a)
$$x = |4|$$

c)
$$\times = |-4|$$

$$d) |x| = -4$$

$$e) x = |x|$$

$$f) |x| + x = 4$$

$$g) |x| - x = 4$$

h)
$$|x+3|=2x-1$$

$$i') |3x-2| = 2x+12$$

$$j) |5x-8| = 3x-16$$

$$|x+11| = 3x - 13$$

4.) Bestimme die Lösungsmenge von

a)
$$|2x| + |x| = 12$$

$$6) |2x + |x|| = 12$$

c)
$$|x+11|+|x+5|=10$$

d)
$$|x+10|-|x-10|=10$$

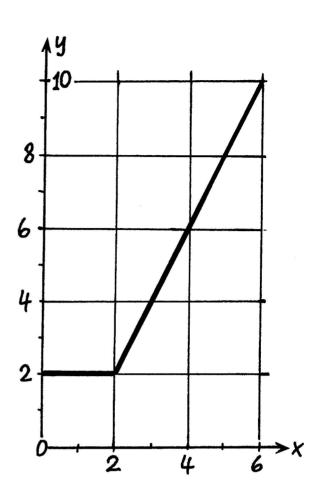
e)
$$2 \cdot |2x-3| - |x+3| = 18$$

$$f)(x+1)\cdot |x-1| = 8$$

$$g)\left|\frac{x+12}{x}\right|=3$$

h)
$$2 \cdot |2x+4| = 3 \cdot |x+9|$$

5.) Für einen gegebenen Wert von x gibt es für die Abbildungsvorschrift |x+y|=5 zwei Werte für y. Vervollständige die Wertetabelle und skizziere die Lösungsmenge der Abbildungsvorschrift.


			1	1	<u> </u>	y		
X	y ₁	y ₂						
-10		y 6			12			
-8			1		9			-
-6			+		6			
-4			-		3			
-2								
0			-10	-6	-2	2	6	10
2			+		-3			
4			-		-6			
6			. 📗					
8			1		-12			
10					-15			

Lösungen

(a) 4
(b)
$$x+|x-4|=\begin{cases} 4 \text{ falls } x \leq 4 \\ 2x-4 \text{ falls } x>4 \end{cases}$$
(c) 0

(c) $|y-x|=\begin{cases} y-x \text{ falls } y \geq x \\ x-y \text{ falls } x$

2.)	y(x)=	= <i>X</i> - ×	+ /x- y
	•	0	2
	•	1	2
		2	2
	•	3	4
		4	6
		5	8
		6	10

$$3\alpha) x = 4$$

$$\ell) \times = \pm 4$$

$$c) \times = 4$$

$$e) \mathbb{L} = \mathbb{R}_o^+$$

$$\mathbb{L} = \{x \in \mathbb{R} | x \ge 0\}$$

f) 1. Fall:
$$x+x=4 \rightarrow x_1=2$$

2. Fall:
$$-x-x = -2x = 4 \rightarrow x_1 = -2$$

2. Fall:
$$-x-x=-2x=4 \rightarrow x_1=-2$$

Probe: $x_1=-2: |-2|-(-2)=4 \longrightarrow \mathbb{L}=\{-2\}$

h) 1. Fall:
$$x + 3 = 2x - 1 \rightarrow 4 = x_1$$

2. Fall: $-x - 3 = 2x - 1 \rightarrow 3x = -2 \rightarrow x_2 = -2/3$
Probe: $x_1 = 4$: $|4 + 3| = 7 = 2 \cdot 4 - 1 \checkmark$
 $x_2 = -2/3$: $|-2/3 + 3| = 2 \cdot (-2/3) - 1 \rightarrow 7/3 = -7/3 \times 1 = 1$
 $L = \{4\}$

i) 1. Fall:
$$3x-2=2x+12 \rightarrow x_1=14$$

2. Fall: $-3x+2=2x+12 \rightarrow 5x_2=-10 \rightarrow x_2=-2$
Probe: $x_1=14$: $|3\cdot 14-2|=40=2\cdot 14+12$
 $x_2=-2$: $|3\cdot (-2)-2|=|-8|=8=2\cdot (-2)+12$
 $L=\{-2;14\}$

j) 1. Fall:
$$5x-8=3x-16 \rightarrow 2x=-8 \rightarrow x_1=-4$$

2. Fall: $-5x+8=3x-16 \rightarrow 8x=24 \rightarrow x_2=3$
Probe: $x_1=-4$: $|5\cdot(-4)-8|=28=3\cdot(-4)-16=-28 \times x_2=3$: $|5\cdot 3-8|=7=3\cdot 3-16=-7\times \Rightarrow \mathbb{L}=\{\}$

k) 1. Fall:
$$x + 11 = 3x - 13 \rightarrow 2x = 24 \rightarrow x_1 = 12$$

2. Fall: $-x - 11 = 3x - 13 \rightarrow 4x = 2 \rightarrow x_2 = \frac{1}{2}$
Probe: $x_1 = 12$: $|12 + 11| = 23 = 3 \cdot 12 - 13$
 $x_2 = \frac{1}{2}$: $|\frac{1}{2} + 11| = 11.5 = 3 \cdot (\frac{1}{2}) - 13 = -11.5 \times \frac{1}{2}$

4a) 1. Fall:
$$2x + x = 3x = 12 \rightarrow x_1 = 4$$

2. Fall: $2x - x = x = 12 \rightarrow x_2 = 12$
3. Fall: $-2x + x = -x = 12 \rightarrow x_3 = -12$
4. Fall: $-2x - x = -3x = 12 \rightarrow x_4 = -4$
Probe: $x_1 = 4$: $|2 \cdot 4| + |4| = 12 \checkmark$
 $x_2 = 12$: $|2 \cdot 12| + |12| = 36 \neq 12 \times 2$
 $x_3 = -12$: $|2 \cdot (-12)| + |-12| = 36 \neq 12 \times 2$
 $x_4 = -4$: $|2 \cdot (-4)| + |-4| = 8 + 4 = 12 \checkmark \Rightarrow \boxed{L} = \{-4,4\}$

8) 1.
$$Tall$$
: $2 \times + \times = 12 = 3 \times \rightarrow \times_{1} = 4$
2. $Tall$: $2 \times - \times = \times = 12 \rightarrow \times_{2} = 12$
3. $Tall$: $-2 \times - \times = -3 \times = 12 \rightarrow \times_{3} = -4$
4. $Tall$: $-2 \times + \times = - \times = 12 \rightarrow \times_{4} = -12$
Probe: $\times_{1} = 4$: $|2 \cdot 4 + |4|| = 12 \vee \times_{2} = 12$: $|2 \cdot 12 + |12|| = 36 \neq 12 \times \times_{3} = -4$: $|2 \cdot (-4) + |-4|| = 4 \neq 12 \times \times_{4} = -12$: $|2 \cdot (-12) + |-12|| = 12 \vee \Rightarrow \boxed{L} = \underbrace{\{-12, 4\}}$

c) 1. Fall:
$$x+11+x+5=2x+16=10 \rightarrow x_1=-3$$

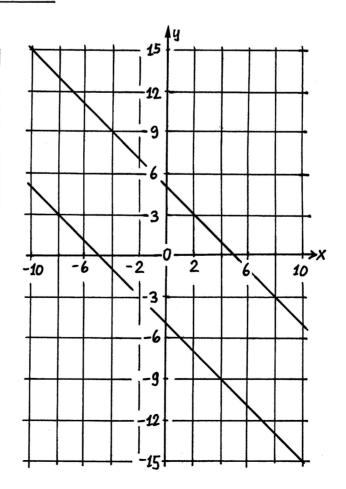
2. Fall: $x+11-x-5=6\neq 10 \times keine \ Lösung!$
3. Fall: $-x-11+x+5=-6\neq 10 \times$
4. Fall: $-x-11-x-5=-2x-16=10 \rightarrow x_2=-13$
Probe: $x_1=-3$: $|-3+11|+|-3+5|=8+2=10 \times x_2=-13$: $|-13+11|+|-13+5|=2+8=10 \times x_2=-13$.

d) 1. Fall:
$$x+10-(x-10)=20 \neq 10 \rightarrow keine\ Lösung!$$
2. Fall: $x+10+x-10=2x=10 \rightarrow x_1=5$
3. Fall: $-x-10-(x-10)=-2x=10 \rightarrow x_2=-5$
4. Fall: $-x-10+x-10=-20 \neq 10 \rightarrow keine\ Lösung!$

Probe: $x_1=5:|5+10|-|5-10|=15-5=10$

$$x_2=-5:|-5+10|-|-5-10|=5-15=-10 \neq 10 \times 2$$

$$\Rightarrow L=\{5\}$$


e) 1. Fall:
$$4x-6-x-3=3x-9=18 \rightarrow x_1=9$$

2. Fall: $4x-6+x+3=5x-3=18 \rightarrow x_2=4.2$
3. Fall: $-4x+6-x-3=-5x+3=18 \rightarrow x_3=-3$
4. Fall: $-4x+6+x+3=-3x+9=18 \rightarrow x_4=-3$
Probe: $x_1=9: 2\cdot |2\cdot 9-3|-|9+3|=18 \vee x_2=4.2: 2\cdot |2\cdot 4.2-3|-|4\cdot 2+3|=3.6 \neq 18$
 $x_3=-3: 2|2\cdot (-3)-3|-|-3+3|=2\cdot |-9|+0=18 \vee x_4=x_3 \rightarrow \underline{L}_1=\frac{\xi-3}{3}$

f) 1. Fall:
$$(x+1) \cdot (x-1) = x^2 - 1 = 8 \rightarrow x = \pm 3$$

2. Fall: $(x+1) \cdot (1-x) = 1 - x^2 = 8 \rightarrow x^2 = -7 \rightarrow \text{keine Lösung!}$
Probe: $x_1 = 3 : (3+1) \cdot |3-1| = 4 \cdot 2 = 8 \checkmark$
 $x_2 = -3 : (-3+1) \cdot |-3-1| = (-2) \cdot 4 = -8 \neq 8 \checkmark$
 $x_3 = -8 \neq 8 \checkmark$
 $x_4 = -8 \neq 8 \checkmark$

g) 1. Fall:
$$\frac{x+12}{x} = \frac{3x}{x} \rightarrow 12 = 2x \rightarrow x_1 = 6$$

2. Fall: $\frac{x+12}{-x} = \frac{-3x}{-x} \rightarrow 12 = -4x \rightarrow x_2 = -3$
Probe: $x_1 = 6$: $\left| \frac{6+12}{6} \right| = \frac{18}{6} = 3$
 $x_2 = -3$: $\left| \frac{-3+12}{-3} \right| = \left| \frac{9}{-3} \right| = 3$

h) 1. Fall:
$$4x + 8 = 3x + 27 \rightarrow x_1 = 19$$

2. Fall: $-4x - 8 = 3x + 27 \rightarrow 7x = -35 \rightarrow x_2 = -5$
3. Fall: $4x + 8 = -3x - 27 \rightarrow 7x = -35 \rightarrow x_3 = -5$
4. Fall: $-4x - 8 = -3x - 27 \rightarrow -7x = -19 \rightarrow x_4 = 19$
Probe: $x_1 = x_4 = 19$: $2 \cdot |2 \cdot 19 + 4| = 3|19 + 9| \rightarrow 84 = 84 \lor x_2 = x_3 = -5$: $2 \cdot |2 \cdot (-5) + 4| = 3 \cdot |-5 + 9| \rightarrow 12 = 12 \checkmark \rightarrow L = \{-5, 19\}$

5.)			
	×	y ₁	y2
	-10	5	15
	-8	3	13
	-6	1	11
	-4	-1	9
	-2	-3	7
	0	-5	5
	2	-7	3
	4	-9	1
	6	-11	-1
	8	-13	-3
	10	-15	- 5

