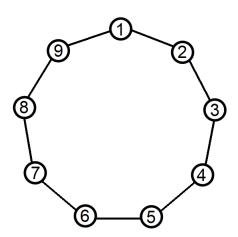
Eindimensionale zelluläre Automaten

https://youtu.be/FuCiNrbxSUw


Übung Nr	Note:
von	Klasse

Einführung:

Mithilfe von zellulären Automaten können Systeme zur Mustererkennung oder Steuerungen mit Künstlicher Intelligenz (KI) konstruiert werden. Wir betrachten hier ein einfaches "handliches" Beispiel mit den wesentlichen Merkmalen.

Kennzeichen sind

Neun Zellen sind auf einem Kreis angeordnet.

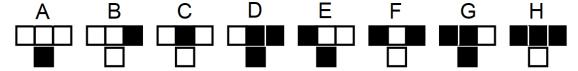
♦ Sie werden jedoch auf einem Band mit elf Zellen gezeigt, bei welchem an den Rändern jeweils noch die benachbarte Zelle angezeigt wird.

In andern Worten, die erste und die letzte Zelle werden zwei Mal gezeigt. Die erste Zelle wird am rechten Rand nochmals angehängt. Ebenso wird die erste Zelle am linken Rand hinzugefügt.

♦ Die Zellen befinden sich in einem von zwei Zuständen "0" oder "1". Diese werden hier mit "weiss" oder "schwarz" gekennzeichnet.

- ♦ In aufeinander folgenden Zyklen ändern die Zellen ihren Zustand ("weiss" oder "schwarz"), abhängig vom jeweils aktuellen Zustand und vom Zustand der beiden Nachbarn links und rechts. Eine Zelle und ihre beiden Nachbarn werden als "Dreiergruppe" bezeichnet.
- ♦ Die Regeln für die Zustandsänderungen sind das "Programm".
- ◆ Für den Zustand einer Zelle und ihrer Nachbarn, d.h. für Dreiergruppen, gibt es acht mögliche Konfigurationen wie folgt:

◆ Das Programm legt fest, welchen Zustand das zentrale Element der Dreiergruppe in der n\u00e4chsten Generation haben wird. Nachfolgend ein Beispiel f\u00fcr ein **Programm**.


Bei diesem Programm sind die zentralen Zellen in der nächsten Generation schwarz für die Dreiergruppen A, D, E und G und für die Dreiergruppen B, C, F und H sind sie weiss.

Beispiel:

Der Anfangszustand (die nullte Generation) sei wie folgt:

9.	1.	2.	3.	4.	5.	6.	7.	8	.9	1.

Es sollen Muster bis zur fünften Generation bestimmt werden. Als Programm wird das Programm oben verwendet.

Lösung:

Congretion	Zellen											
Generation	9.	1.	2.	3.	4.	5.	6.	7.	8	.9	1.	
0.							333 333			- 100 - 100 - 100 - 100		
1.								300 300 300				
2.								000 000 000				
3.												
4.												
5.								300 300 300		336 333 333		

Programm und nullte Generation für die gewählte Nummer der Übung:

Programme:

Nullte Generation:

	Zellen													
Nr.	1.	2.	3.	4.	5.	6.	7.	8.	9.					
1									333					
2														
3									333 333 333					
4									333					
5														
6	3000													
7		300 300 300												
8		300 300 300												
9		300 300 300	000 000 000				333 333 333		388 388					
10	333 333 333		300 300 300											
11		000 000 000							335 335 335					
12	333 333 333	300 300 300	000 000 000											
13							333 333 333							
14		366 366 366	000 000 000		300 300 300									
15			000 000 000		200 200 200		300 000 000							

Übung Nr.				Nam	e/Kl	asse:					
Programm:	В	C		D		E	F	•	G		Н
								■ 			
Entwurf:											
Generation						Zellen	l				
Generation	9.	1.	2.	3.	4.	5.	6.	7.	8	.9	1.
0.											
1.											
2.											

Endgültig:

3.

4.

5.

6.

7.

Generation	Zellen										
	1.	2.	3.	4.	5.	6.	7.	8	.9		
0.											
1.											
2.											
3.											
4.											
5.	_					_	_				
6.											
7.	_					_	_				

Notizen:

Generation		Zellen											
Generation	9.	1.	2.	3.	4.	5.	6.	7.	8	.9	1.		
0.													
1.													
2.													
3.													
4.													
5.													
6.													
7.	_	_		_		_	_	_	_	_	_		

Comoration	Zellen											
Generation	9.	1.	2.	3.	4.	5.	6.	7.	8	.9	1.	
0.												
1.												
2.												
3.												
4.												
5.												
6.												
7.												