Differentialgleichungen

Themen:

- Das Richtungsfeld von Differentialgleichungen erster Ordnung (A)
- Integration (B)
- Das Eulersche Polygonzugverfahren (C)
- Separierbare Différentialgleichungen erster Ordnung (D)
- Homogene lineare Differentialgleichungen erster Ordnung (E)
- Inhomogene lineare Differentialgleichungen erster Ordnung (F)
- Homogene lineare Differentialgleichungen höherer Ordnung mit konstanten Koeffizienten. Das Charakteristische Polynom (G)
- Die partikuläre Lösung von inhomogenen linearen Differentialgleichungen höherer Ordnung (H)
- Ableitungen in der Mechanik und der Elektrodynamik (I)
- Asymptotisches Verhalten bei Differentialgleichungen erster Ordnung (J)

A.1) Bestimme das Richtungsfeld der Differentialgleichung $y'(x,y) = (x-2) \cdot (y-1)$ im ersten Quadramten mithilfe der Wertetabelle

	X				
<i>y</i>	0	1	2	3	4
0					
1					
2	r				
3					
4					

A.2) Bestimme das Richtungsfeld der Differentialgleichung y'(x,y) = (y-1)/(x-2) im ersten Quadranten mithilfe der Wertetabelle

	X				
<i>y</i> -	0	1	2	3	4
0	3 55555				
1					
2					
3					
4					

B.1) Bestimme

a)
$$y = \int (2x^3) dx$$

b)
$$y = \int e^{-2x} dx$$
 so, dass $y(0) = 5$

c)
$$y = \int \frac{dx}{x-2}$$

d)
$$y = \int e^{2x} \sin 3x \, dx$$
 so, dass $y(0) = 2$

$$e) y = \int x \cdot \ln x \, dx$$

- B.2) Berechne s(t) aus $a(t) = \ddot{s}(t) = 3t \cdot e^{-t}$ so, dass s(0) = 0 und v(0) = 0, wobei $v(t) = \dot{s}(t)$. Hinweis: $\int x \cdot e^{-x} dx = -(x+1)e^{-x} + C$ Siehe Formelsammlung S.73
- C.1) Bestimme mit dem Eulerschen Polygonzugverfahren eine Näherung für y(x) im Intervall $0 \le x \le 42$ wenn $y' = f(x,y) = y/e^x$ für y(0) = 2.

 Für die Schrittweite h soll gelten h = 0.1.

 Skizziere den Graphen von y(x) für den angegebenen Bereich von x.
- C.2) Bestimme mit dem Eulerschen Polygonzugverfahren eine Näherung für y(x) und z(x) im Intervall $0 \le x \le 4z$ wenn

$$\begin{vmatrix} y' = x \cdot y + z \\ z' = x \cdot z - y \end{vmatrix}$$

für y(0)=2(0)=1. Für die Schrittweite h soll gelten h=0.1. Skizziere die Graphen von y(x) und z(x) im angegebenen Bereich von x.

- D.1) Bestimme die Lösung von y'=2xy für welche y(0)=2.
- D.2) Bestimme die Lösung von (2-y)dx + (3+x)dy=0 für welche y(0) = 42.
- D.3) Bestimme die Lösung von (xy)y' + ln x = 0
- E.1) Bestimme die Lösung von $x^ny'-y=0$ so, dass y(0)=1 wenn $n\neq 1$ und y(1)=1wenn n=1. [n sei eine ganze Zahl].
- E.2) Bestimme die Lösung von y'-(lnx)y=0.
- E.3) Bestimme die Lösung von $y'-(\sin x)y=0$ so, dass y(0)=2.
- E.4) Bestimme die Lösung von (x+1)y'-xy=0 so, dass y(0)=2.
- E.5) Bestimme die Lösung von $\sqrt{x^2+1}y'-y=0$ so, dass y(0)=3.
- F.1) Bestimme die Lösung von a) y'-y=2, y(0)=1b) y'-y=mi(2x), y(0)=1.6c) $y'+y=e^{x}$, y(0)=5/2d) $y'-y=e^{x}$, y(0)=2e) $xy'-y=x^{2}$, y(0)=3
- G.1) Bestimme die Lösung von a) y'' + 9y = 0 (b) y'' - 9y = 0 (c) y'' + 3y' = 0

a)
$$y'' + y' - 6y = 0$$

$$c)y'' - 4y' + 13y = 0$$

a)
$$y'' - y = \sin x$$

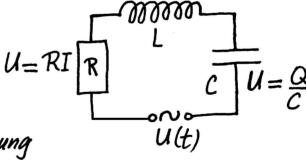
$$b) y'' + y = \sin x$$

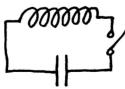
c)
$$y'' - 2y' + 2y = e^x + \sin x$$

I.1) Es gitt:
$$I = \dot{Q}$$
, $\dot{I} = \ddot{Q}$

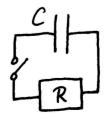
U-1 T

a) Notieve die Differentialgleichung für eine ungedämpfte elektrische Schwingung

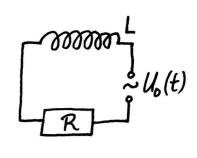




B-) Notiere die Differentialgleichung für die Entladung eines Kondensators über einem Widerstand.

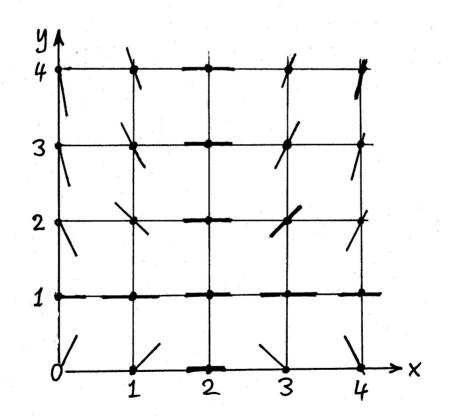


c) Notiere die Differentialgleichung für eine Serienschaltung mit einer Spule und einem ohmschen Widerstand an einer Wechselspannung Uo(t) = û·sin(w·t)

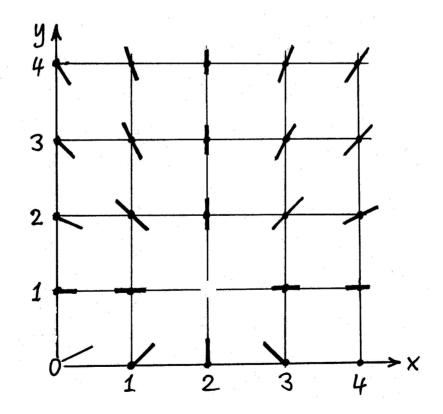


- I.2) $v(t) = \dot{s}(t)$, $a(t) = \dot{v}(t) = \dot{s}(t)$, $F = m \cdot a$, $P(t) = \dot{w}(t)$, $w(t) = F(t) \cdot s(t)$
 - a) Federpendel: Es gift $F = -D \cdot y = m \cdot a$, wobei $a = \dot{y}$. Formuliere die Differential-gleichung.
 - b) Man lässt eine Stahlkusel in Zähflüssigem Ölfallen. Wenn man den statischen Auftrieb vernachlässist wirkt auf den Körper eine beschleunigende Kraft Fg. c.v. Bestimme eine Differentialgleichung für den Fall der Kugel.
 - c) Ein Körper gleitet ouf einer horizontalen Ebene. Die verrichtete Reibungsarbeit $\Delta W_R = \mu_G$ mgs entspricht dem Verlust an Bewegungsenergie $\Delta E_k = \frac{1}{2} m (v_0^2 v^2)$. Formuliere eine entsprechende Differentialgleichung.
- J.1) Welchem Wert nähert sich y asymptotisch für $t \rightarrow \infty$ wenn
 a) $\dot{y} + ay = c$?
 b) $\dot{y} = ky \cdot (a b \cdot y)$?
 c) $(a b \cdot y) \dot{y} = c d \cdot y$?

Musterlösungen						
A. 3	1)			X		* .
	y	0	1	2	3	4
8 4	0	2	1	0	-1	-2
	1	0	0	0	0	0
	2	-2	-1	0	1	2
	3	-4	-2	0	2	4
	4	-6	-3	0	3	6



A. 2	2)			X		a f
	y	0	1	2	3	4
	0	1/2	1	±∞	-1	-1/2
	1	0	0		0	0
	2	-1/2	-1	±∞	1	1/2
	3	-1	-2	± 00	2	1
	4	-3/2	-3	<u>+</u> ∞	3	3/2



8.1a)
$$y = \int (2x^{3})dx = \frac{x^{4}}{2} + C$$

b) $y = \int e^{-2x}dx = -\frac{e^{-2x}}{2} + C$, $y(0) = -\frac{1}{2} + C = 5$
 $+\frac{1/2}{2} = C = \frac{11}{2} \implies y = \frac{11 - e^{-2x}}{2}$
c) $y = \int \frac{dx}{x - 2} = \ln|x - 2| + C$
 $d(x) = \int e^{2x} \sin 3x \, dx = \frac{e^{2x}}{13} \left[2 \sin 3x - 3 \cos 3x \right] + C$
 $y(0) = \frac{1}{13} \left[0 - 3 \cdot 1 \right] + C = 2 + \frac{3/73}{13} \quad C = \frac{29}{13} \implies \frac{y = \frac{1}{13} \left[\left(2 \sin 3x - 3 \cos 3x \right) e^{2x} + 29 \right]}{2 + \frac{1}{13} \left[\left(2 \sin 3x - 3 \cos 3x \right) e^{2x} + 29 \right]}$
e) $y = \int x \cdot \ln x \, dx = \frac{1}{4} x^{2} \left[2 \ln x - 1 \right] + C$
8.2) $\dot{s}(t) = v(t) = \int \dot{s}(t) \, dt = 3 \int \frac{t}{e^{t}} \, dt = -3 \frac{t+1}{e^{t}} + C_{1}$
 $\dot{s}(0) = -3 \frac{0+1}{1} + C_{1} = C_{1} - 3 = 0 \implies C_{1} = 3$
 $\dot{s}(t) = v(t) = 3 \left[1 - \frac{t+1}{e^{t}} \right] = 3 \left[1 - e^{-t} - t \cdot e^{-t} \right]$
 $5(t) = \int \dot{s}(t) \, dt = 3 \int \left[1 - e^{-t} - t \cdot e^{-t} \right] \, dx$
 $= 3 \cdot \left[t + e^{-t} + (t+1)e^{-t} \right] + C_{2}$
 $5(t) = 3 \cdot \left[t + \frac{t+2}{e^{t}} \right] + C_{2} \implies 5(0) = 3 \cdot \left[0 + \frac{0+2}{1} \right]$
 $+ C_{2} = 0 \implies C_{2} = -6$
 $5(t) = 3 \cdot \left[\frac{t+2}{e^{t}} + t - 2 \right]$

C.1) $y'=y/e^{x}$

×n	yn	$h \cdot f(x_n, y_n) = 0.1 \cdot y_n / e^{x_n}$
0	2	$0.1 \cdot 2/e^{\circ} = 0.2$
0.1	2.2	$0.1 \cdot 2.2/e^{0.1} = 0.199$
0.2	2.399	$0.1 \cdot 2.399/e^{0.2} = 0.1964$
0.3	2.5954	$0.1 \cdot 2.5954 / e^{0.3} = 0.1923$
0.4	2.7877	$0.1 \cdot 2.7877/e^{0.4} = 0.1869$
0.5	2.9746	

$$(C.2) | y' = x \cdot y + 2 |$$

 $| z' = x \cdot 2 - y |$

		•		
Xn	yn.	Zn	$0.1\cdot(x_n\cdot y_n+z_n)$	
0	1	1	$0.1 \cdot (0.1+1) = 0.1$	0.1.(0.1-1)=-0.1
0.1	1.1	0.9	0.1·(0.1·1.1+0.9) = 0.101	0.1·(0.1·0.9-1.1) = -0.101
0.2	1.201	0.799	$0.1 \cdot (0.2 \cdot 1.201 + 0.799) = 0.1039$	$0.1 \cdot (0.2 \cdot 0.799 - 1.201) = -0.1041$
0.3	1.3049	0.6949	$0.1 \cdot (0.3 \cdot 1.3049 + 0.6949) = 0.1086$	0.1·(0.3·0.6949- 1.3049)=-0.1096
0.4	1.4135	0.5853	0.1·(0.4·1.4135+ 0.5853) = 0.1151	0.1·(0.4·0.5853- 1.4135)=-0.1179
0.5	1.5286	0.4674		

D.1)
$$(\ln y)' = 2x \rightarrow \ln y = e^{x^{2}} + C$$
 $y(0) = 1 + C = 2 \rightarrow C = 1 \rightarrow y(x) = e^{x^{2}} + 1$

D.2) $\frac{dx}{3+x} = \frac{-dy}{2-y} = \frac{dy}{y-2} \rightarrow \ln(x+3) = \ln(y-2)$
 $+ \ln C_{0} \rightarrow \ln\left(C_{0}\frac{y-2}{x+3}\right) = 0 \rightarrow C_{0}\frac{y-2}{x+3} = 1$
 $\rightarrow y = \frac{x+3}{C_{0}} + 2 \rightarrow y(0) = \frac{0+3}{C_{0}} + 2 = \frac{1}{2} \rightarrow \frac{2}{C_{0}} + \frac{2}{2} = \frac{1}{2} \rightarrow \frac{2}{C_{0}} + \frac{2}{2} = \frac{1}{2} \rightarrow \frac{2}{2} \rightarrow \frac{2}{$

E.2)
$$y'/y = (\ln y)' = \ln x \rightarrow \ln y = x \cdot (\ln x - 1) + C_o$$

= $\ln (x^x) - x + C_o \rightarrow y = C \cdot x^x/e^x = C(\frac{x}{e})^x$

E.3)
$$y'/y = (\ln y)' = \sin x \rightarrow \ln y = -\cos x + C_0$$

 $\rightarrow y = C \cdot e^{-\cos x}$

E.4)
$$y'/y = (\ln y)' = \frac{x}{x+1} = 1 - \frac{1}{x+1} \rightarrow \ln y = x - \ln (x+1) + C_0 \rightarrow y = \frac{C \cdot e^x}{x+1} = \frac{1}{\sqrt{x^2+1}} \rightarrow \ln y = \ln (\sqrt{x^2+1} + x) + C_0 \rightarrow y = C(\sqrt{x^2+1} + x), \ y(0) = C \cdot (\sqrt{0+1} + 0) = C = 3 \rightarrow y = \frac{3(\sqrt{x^2+1} + x)}{3(\sqrt{x^2+1} + x)}$$

F. 1a) Char. Gl. $r-1=0 \rightarrow y_n = C \cdot e^x, \ y_p = R \rightarrow y_p' = 0 \rightarrow 0 - R = 2 \rightarrow R = -2$
 $y_g = y_n + y_p = C \cdot e^x - 2 \rightarrow y_g(0) = C \cdot e^0 - 2 = C - 2 = 1 \rightarrow C = 3 \rightarrow y = \frac{3e^x - 2}{2}$

b) Char. Gl. $r-1=0 \rightarrow y_n = C \cdot e^x, \ y_p = R \cdot \sin 2x + B \cos 2x, \ y_p' = 2R \cos 2x - 2B \sin 2x - R \sin 2x + B \cos 2x, \ y_p' = 2R \cos 2x - 2B \sin 2x - R \sin 2x + B \cos 2x = \sin 2x + \cos 2x = \cos 2x$

 $y = 2e^{x} - \frac{1}{5} \left[\frac{\sin 2x + 2\cos 2x}{\cos 2x} \right]$

 $\rightarrow C = 1.6 + 0.4 = 2 \rightarrow$

c) Char. Gl.:
$$r+1=0 \rightarrow y_h = C \cdot e^{-x}$$
, $y_p = A \cdot e^x = y_p'$
 $A \cdot e^x + A \cdot e^x = 2Ae^x = e^x \rightarrow A = \frac{1}{2} \rightarrow \frac{1}{2} = \frac{1}{2} =$

a) Char. Gl.
$$r-1=0 \rightarrow y_h = C \cdot e^x$$
, $y_p = Ax \cdot e^x$, $y_p' = A \cdot (x+1) \cdot e^x \rightarrow Axe^x + A \cdot e^x - Axe^x = e^x$ $\rightarrow A \cdot e^x = e^x \rightarrow A = 1 \rightarrow y_p = x \cdot e^x$, $y_g = y_h + y_p = (C + x) \cdot e^x$, $y(0) = (C + 0) \cdot e^0 = C = 2 \rightarrow y = (x+2) \cdot e^x$

e)
$$\times y' - y = x^2$$
, $y_h/y_h = (\ln y_h)' = \frac{1}{x} \rightarrow$
 $\ln y_h = \ln x + C_0 \rightarrow y_h = C_X$
 $y_p = Ax^2$, $y_p' = 2Ax$
 $Einsetzen: x \cdot 2Ax - Ax^2 = 2Ax^2 - Ax^2 = x^2$
 $\rightarrow A = 1 \rightarrow y_g = y_h + y_p = C_X + x^2$
 $y' = C + 2x$, $y'(0) = C + 2 \cdot 0 = C = 3 \rightarrow y = 3X + X^2$

G. 1a) Char. Gl.:
$$r^2 + 9 = 0 \rightarrow r = \pm 3i$$

 $\rightarrow y = C_1 \cdot \sin 3x + C_2 \cdot \cos 3x$

L) Chan. Gl.:
$$r^2 - 9 = 0 \rightarrow r = \pm 3$$

 $\rightarrow y = C_1 \cdot e^{3x} + C_2 \cdot e^{-3x}$

C) Char. Gl.:
$$r^2 + 3r = r \cdot (r+3) = 0 \rightarrow y = \frac{C_1 + C_2 \cdot e^{-3x}}{2}$$

G.2a) Char. Gl.:
$$r^2 + r - 6 = (r+3) \cdot (r-2) = 0$$

 $y = C_1 \cdot e^{2x} + C_2 e^{-3x}$

b) Char. Gl.:
$$r^2 - 4r + 4 = 0 = (r-2)^2 \rightarrow y = (C_1 + C_2 \times)e^{2\times}$$

c) Char. Gl.:
$$r^2 - 4r + 13 = 0 \rightarrow \frac{a | k| c}{1 | -4| 13}$$

$$D = k^2 - 4ac = 16 - 4 \cdot 1 \cdot 13 = -36$$

$$r = \frac{4 \pm \sqrt{-36}}{2} = 2 \pm 3i$$

 $y = [C_1 \cdot m_1 3x + C_2 \cdot cos 3x] \cdot e^{2x}$

G.3) Char. G1.:
$$r^4-625=0 \rightarrow r_1=5, r_2=-5, r_3=5i, r_4=-5i$$

 $y=C_1e^{5x}+C_2e^{-5x}+C_3\sin 5x+C_4\cos 5x$

G.4) Char. Gl.
$$r^4 - 21r^2 - 100 = 0 \rightarrow r^2 = \frac{21 \pm V441 - 4 \cdot 1 \cdot (-100)}{2} = \frac{21 \pm 29}{2}$$

$$r^2 = 25 \rightarrow r_1 = 5, r_2 = -5$$

$$r^2 = -4 \rightarrow r_3 = 2i, r_4 = -2i$$

$$y = C_1 \cdot e^{5x} + C_2 e^{-5x} + C_3 \sin 2x + C_4 \cos 2x$$

H.1) Char. Gl.:
$$r^2 + 4 = 0 \rightarrow r = \pm 2i$$
, $y_h = C_1 \cdot \sin 2x + C_2 \cdot \cos 2x$, $y_p = y_p'' = A \cdot e^x$
Einsetzen: $A \cdot e^x + 4Ae^x = 5Ae^x = e^x \rightarrow A = \frac{1}{5}e^x$
 $y = y_h + y_p = C_1 \sin 2x + C_2 \cos 2x + \frac{1}{5}e^x$

H. 2a) Char. Gl.:
$$r^2 - 1 = 0 \rightarrow y_h = C_1 e^x + C_2 e^{-x}$$

 $y_p = A \cdot \sin x + B \cdot \cos x$, $y_p'' = -y_p$
Einsetzen: $-A \sin x - B \cos x - A \sin x - B \cos x =$
 $-2A \sin x - 2B \cos x = \sin x \rightarrow B = 0$
und $A = -\frac{1}{2} \rightarrow y = C_1 e^x + C_2 e^{-x} - \frac{1}{2} \sin x$

$$y_p = Ax \sin x + Bx \cos x \rightarrow y_p' = A \sin x + B\cos x +$$
 $Ax \cos x - Bx \sin x, y_p'' = 2A\cos x - 2B \sin x Ax \sin x - Bx \cos x$

Einsetzen:
$$y_p'' + y = 2 A \cos x - 2 B \sin x - A x \sin x - B x \cos x + A x \sin x + B x \cos x = 2(A \cos x - B \sin x) = \sin x \rightarrow A = 0 u. B = -1/2 \rightarrow y = C_1 \sin x + (C_2 - \frac{x}{2}) \cos x$$

c) Char. Gl.:
$$r^2-2r+2=0 \rightarrow r=1\pm i \rightarrow y_h=(C_1\sin x+C_2\cos x)\cdot e^x$$
, Ansatz
partikulare Lösung: $y_p=A\cdot e^x+B\sin x+C\cos x\rightarrow y_p'=A\cdot e^x+B\cos x-C\sin x$
 $y_p''=A\cdot e^x-B\sin x-C\cos x$

$$y_p'' - 2y_p' + 2y_p = A \cdot e^x + (B + 2C) \sin x + (C - 2B) \cos x$$

 $= e^x + \sin x \rightarrow A = 1, B + 2C = 1$
 $(Md \ C - 2B = 0 \rightarrow C = 2B^{-1})$
 $B + 2 \cdot 2B = 5B = 1 \rightarrow B = 45, C = 2B$
 $= 2/5 \rightarrow y_p = e^x + \frac{1}{5}(\sin x + 2\cos x)$
 $y = (C_1 \sin x + C_2 \cos x + 1) \cdot e^x + \frac{1}{5}(\sin x + 2\cos x)$

I.1a)
$$L\ddot{I}+Q/C=0 \rightarrow L\ddot{Q}+Q/C=0 \rightarrow \ddot{Q}+Q/(LC)=0$$

b)
$$Q/C + RI = 0 \rightarrow \dot{Q} + Q/(RC) = 0$$

c)
$$L\dot{I} + RI = 0 \rightarrow \dot{I} + (R/L)I = 0$$

I.2a)
$$m\ddot{y} + Dy = 0 \rightarrow \ddot{y} + (D/m)y = 0$$

$$f' | m(g-a) - cv = 0 \rightarrow ma + cv = m\dot{v} + cv = mg$$

$$\rightarrow \dot{v} + (c/m)v = g$$

c)
$$\Delta W_R = u_G mgs = \frac{1}{2}m(v_o^2 - v^2) = \Delta E_k \xrightarrow{m}$$
 $2u_G gs = v_o^2 - (\dot{s})^2 \rightarrow (\dot{s})^2 + 2u_G gs = v_o^2$
 $J.1a) \dot{y} = 0 \rightarrow ay = c \rightarrow \underline{y \rightarrow c/a}$

b) $\dot{y} = 0 \rightarrow ky \cdot (a - by) = 0 \rightarrow \underline{y \rightarrow 0} \text{ oder}$
 $\underline{y \rightarrow a/b}$
 $\underline{c}) \dot{y} \rightarrow 0 \rightarrow \underline{y \rightarrow c/a}$